
5March 2024 | Volume 28, Issue 1 GetMobile

Hao Lin Tsinghua University, Beijing, China Jiaxing Qiu, Hongyi Wang Tsinghua University and ByteDance Inc., Beijing, China
Zhenhua Li Tsinghua University, Beijing, China Liangyi Gong CNIC of CAS, Beijing, China
Di Gao, Yunhao Liu Tsinghua University, Beijing, China Feng Qian University of Southern California, CA, USA
Zhao Zhang, Ping Yang ByteDance Inc., Beijing, China Tianyin Xu University of Illinois at Urbana-Champaign, IL, USA

Editor: Steve Ko

[EXPERIMENTAL METHODS]
Ill

us
tr

at
io

n,
 is

to
ck

ph
ot

o.
co

m For more than a decade, researchers have been extensively exploring mobile app testing on
virtual devices [1-9], which are software-emulated mobile devices running on commodity
servers, in a similar vein as virtual machines (VM) in the cloud. Building on server virtualization,
virtual devices naturally inherit the benefits of VM, such as scalability, elasticity, and cost efficiency.

Moreover, virtualization enables useful features not offered by physical devices, such as service
instrumentation [3], whole-system snapshot [9], and memory introspection [1,2], atop which a series
of advanced testing and debugging techniques are developed.

TAKE THE BLUE PILL:
PURSUING MOBILE APP
TESTING FIDELITY, EFFICIENCY,
AND ACCESSIBILITY WITH
VIRTUAL DEVICE FARMS

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3665112.3665114&domain=pdf&date_stamp=2024-05-13

GetMobile March 2024 | Volume 28, Issue 16

In contrast to the wide adoption of virtual
devices in academic research, it remains
controversial to rely on virtual devices for
mobile app testing in practice, especially in
industrial settings. The main concern comes
from the inherent difficulties of high-fidelity
device emulation, especially in an open
mobile ecosystem, such as Android where
hundreds of new phone models are released
every year with heterogeneous hardware and
highly customized software (as exemplified
in Figure 1). Discrepancies between virtual
devices and physical devices may lead to
both escapes of bugs and false alarms. For
mobile apps with a global user base, even
seemingly small-numbered discrepancies
could have magnified impacts.

Consequently, major mobile app com-
panies are instead spending millions of
dollars to build and operate physical device
farms, a dedicated infrastructure that hosts
diverse phone models for comprehensive
mobile app testing (Figure 2). For example,
Douyin [10], a mobile app with 842 million
users, is tested on a large-scale device farm
before its version releases, which hosts a
total of 5,918 different device models as of
January 2022. The device farm costs more
than 1M US dollars to build, and over
0.6M dollars per year for device upgrades
and replacements, not including the yearly
salaries of the maintenance team, carrier
plan expenses of cellular-capable devices,
maintenance cost of Wi-Fi networks, power
usage, etc.

To reduce the operation cost, we study
the essential problems of using virtual
device farms for large-scale mobile app
testing in industrial settings. Our goal is to
(1) quantitatively understand the fidelity of
virtual devices, and (2) explore how to better
utilize virtual device farms to drastically
improve the efficiency and accessibility of
large-scale mobile app testing.

From January 1 to March 31, 2022,
we conducted a comparative study of
the real-world test results of Douyin and
nine other global-scale mobile apps on a
massive commercial testing infrastructure
that deploys a physical device farm and
its virtualized counterpart. We show that
high testing fidelity can be achieved by
sensible design and implementation of
virtual device farms. Most importantly, we
reveal major discrepancies in non-standard,
uncoordinated, and occasionally defective

[EXPERIMENTAL METHODS]

vendor-specific services, drivers, and
defense mechanisms, rather than hardware
heterogeneity and system customizations.
With that, we improve and use virtual device
farms to build a continuous mobile app
testing pipeline, which substantially improves
the testing efficiency and accessibility in
production. To benefit the community,
we also publish the data and analysis code
involved in this study at https://github.com/
android-emulation-testing/emu-fidelity-ae.

BUILDING THE VIRTUAL
DEVICE FARM
Aiming to build a digital twin of the
physical farm (that mimics the physical
devices as much as possible) and understand
the fidelity limitations of existing virtual
devices, we make several important design
decisions in terms of hardware, mobile OS
and mobile app for our virtual device farm,
based on state-of-the-art mobile emulation
solutions. The overall architecture of our
virtual devices is shown in Figure 3.

For the hardware infrastructure, we
choose ARM servers for hosting virtual
devices instead of more common x86
servers. The rationales are twofold. First,
with the recent development of the ARM
server market, an ARM server is ~20%
cheaper than an x86 server with the same
number of CPU cores and memory/storage

capacity. Second, the affinity between ARM
servers and Android phones (all of which
employ ARM SoCs) avoids the need for
dynamic binary translation (DBT) from
the ARM instructions of Android apps to
the x86 instructions, particularly given
that existing DBT support (Intel Houdini
and Google libndk) for Android is neither
complete (e.g., no DBT tool for Android 10)
nor reliable (e.g., frequent crashes in certain
apps’ native libraries).

For the mobile OS running inside virtual
devices (i.e., guest OS), state-of-the-art
mobile emulation techniques [11,12] usually
use Framework-level hooking to achieve
emulation of mobile hardware, such as Wi-Fi,
GPU, Bluetooth, modem, etc. Instead, we
leverage virtio devices available in Android’s
Linux kernel for the emulation of high-
throughput I/O devices (e.g., storage and
GPU); for the other hardware components
(e.g., various sensors), we provide pure
software emulation at the HAL. In this way,
we avoid Framework-level modifications of
the guest OS to preserve as much source-
level fidelity as possible.

To match vendors’ app-related custom-
izations, we also install the vendor-specific
app service platforms, i.e., a collection of
installable vendor apps and services, such
as GMS (Google Mobile Services) and
HMS (Huawei Mobile Services), on each

FIGURE 1. Hardware and software dynamics of the Android ecosystem.

Android Version Distribution

Custom Android System

OS Version

Service Platform

Highly-Customized Software

Andriod
13

Andriod
12

Andriod
11

Andriod
10

Curve Display Foldable Display Flip Display

Google
Tensor®

MediaTek
Dimensity®

Qualcomm
Snapdragon®

Camera Biometrics Sensors

Heterogeneous Hardware

Display Form

SoC Platform

Peripheral Hardware

7March 2024 | Volume 28, Issue 1 GetMobile

[EXPERIMENTAL METHODS]

virtual device. In contrast, we do not port
other system-level components (system
services and drivers) given their intricate
dependencies on proprietary software
and hardware. For example, Qualcomm
drivers rely on the MSM Android Kernel
Subsystems, and follow their own hardware
specifications to implement register I/O
and MMIO, which are proprietary and hard
to emulate [13].

WHAT LEAD TO DISCREPANCIES?
We collected the test results of Douyin and
nine other global-scale popular mobile apps
(as detailed in Table 1) between January 1
and March 31 in 2022. For each version

release of an app, we run automated tests
using state-of-the-art model-based UI testing
tools [14] on both the physical and virtual
device farms.

Our study captures a total of 390,286
test failure events on physical and virtual
devices, with 873 root causes. From the large
dataset, we have several important findings
regarding the actual fidelity of virtual devices
in practice, and the causes of discrepancies.

Overall Fidelity. First and foremost, we
answer the fidelity concern by showing
that the testing fidelity of virtual devices
is surprisingly good. Among all the failure
events captured on the physical devices,

the vast majority (92.4%) of them are also
captured on the corresponding virtual
devices. Meanwhile, the false positives are
low – only 1.8% of failure events on virtual
devices do not manifest on the physical
devices. Figure 4 shows the precision and
recall per app. The fidelity characteristics
are similar across the apps. This indicates
that with sensible design, implementation,
and configuration, virtual device farms can
achieve high-fidelity mobile app testing for
diverse device models.

Hardware-Level Discrepancies. At the
hardware-level, counterintuitively, we
show that the device emulator’s lack of
support for vendor-specific hardware is
not a major root cause of discrepancies.
This is because Android HAL provides no
abstractions for vendor-specific hardware,
which is thus rarely accessed by mobile apps
except vendors’ own apps. On the contrary,

FIGURE 2. A physical device farm for
comprehensive mobile app testing.

FIGURE 3. Architecture of our virtual devices.

App Functionality # Users # Releases Test Time

Douyin Video streaming shopping, social media, 842M 12 72 hours
 map, education, etc.

Douyin Lite Video streaming, communication, travel, 210M 12 72 hours
 photography, etc.

Xigua Video Video streaming, payment, shopping, 3D gaming, etc. 180M 12 72 hours

Toutiao News feed, shopping, web browsing, 3D gaming etc. 530M 12 72 hours

Toutiao Lite News feed, video streaming, security 130M 12 72 hours
 checking, payment, etc.

Lark Communication, email, video conference, 9.4M 5 30 hours
 cloud storage, etc.

Helo Social media, video streaming, communication, etc. 50M 12 72 hours

Fizzo Novel E-book, shopping, 3D gaming, social media, etc. 10M 5 30 hours

Xingfu Li E-commerce, video streaming, finance, 7.5M 12 72 hours
 communication, etc.

Resso Music Music streaming, communication, social media, etc. 40M 9 54 hours

TABLE 1. Mobile apps used in this study

BUILDING ON SERVER
VIRTUALIZATION,
VIRTUAL DEVICES
NATURALLY INHERIT
THE BENEFITS OF VM,
SUCH AS SCALABILITY,
ELASTICITY, AND
COST EFFICIENCY

GetMobile March 2024 | Volume 28, Issue 18

[EXPERIMENTAL METHODS]

defective drivers of common hardware on
physical devices contribute to 27.6% of the
discrepancies. For example, a buggy null-
termination of C strings in the video codec
module of Meizu’s systems causes the second
most (9.1%) false positives. Similarly, a bug
in the GPU drivers of certain old MediaTek
SoCs incurs 8.9% of false negatives.

Software-Level Discrepancies. At the
software level, we find that vendor-specific
Android framework customizations incur
few discrepancies either. The compatibility
is largely attributed to specifications enforced
by Android CTS (Compatibility Test Suite)
and VTS (Vendor Test Suite), which are unit-
level tests to ensure functional consistency
of standard Android components after
customizations. However, CTS and VTS do
not check interfaces between stakeholders.
Consequently, add-on system services often
break specifications of other stakeholders.
For example, an implicit long-to-int type
conversion causing integer overflow during
Android’s initialization of vendor-specific
system services causes the most false
negatives (14.9%).

Ecosystem Discrepancies. Finally, we find
that there are considerable discrepancies
in the occurrence frequency of certain
failures among different regional mobile app
ecosystems. For example, due to a lack of well-
regulated app stores like Google Play, mobile
users of certain regions (e.g., China) are more
prone to malicious apps. In reaction, many
phone vendors in those regions deploy
very aggressive defense mechanisms (e.g.,
force killing of apps upon long background
activities) to limit app behaviors; however,
such mechanisms cause side effects on
regular apps, such as resource leaks and data
corruption. Tests on related devices manifest
up to 1,025× more frequent occurrences of
certain failures than on other devices.

Improving Fidelity. To improve the virtual
device fidelity, we did not limit ourselves to
pure technical solutions, but also coordinate
stakeholders in the mobile industry. At the
virtual device side where we can easily apply
patches, we align the implementations like
graphics format interpretations and defense
mechanisms. For proprietary vendor
components of physical devices, we find that
vendors are often not well motivated to fix
seemingly app-specific issues. To convince
them to apply our fixes, we develop a
dynamic binary patching technique for
quickly deploying our proposed fixes at
runtime (without modifying sources). The
fixes then serve as a proof of causality for
motivating untrusting stakeholders. As a
result of these efforts, the recall of virtual
devices increases from 92.4% to 94.7%, and
the precision grows from 98.2% to 99.1%.

VIRTUAL DEVICES FOR
CONTINUOUS TESTING
With the deep understanding of testing
fidelity, we take a step further to reshape the
mobile app testing infrastructure of Douyin.
Previously, all the tests of Douyin before its
version releases were directly conducted on
the physical device farm. The results were
high operation cost and reduced device
lifetime.

With high-fidelity virtual devices, we
developed a continuous mobile app testing
pipeline to enable CI/CD, as illustrated
in Figure 5. The idea is to combine the
efficiency of virtual devices and the safety of
physical devices – virtual devices are used
to continuously test code and configuration
changes to detect most functional bugs
during development cycles, while physical
devices are used only upon app releases as

the last-level defense to capture escaped bugs.
Since our continuous testing has captured
most app-level bugs (which account for 93%
of all bugs), tests on physical devices are
much less frequently interrupted by failures.

We deployed and analyzed the
continuous testing pipeline in production
with the ten studied apps from January 1
to February 28 in 2023. The new pipeline
accelerates the end-to-end app development
workflow by around 40%. Also, the device
lifespan is lengthened by 1.5× on average
due to reduced workload, and maintenance
efforts are greatly reduced. The result is ~3×
reduction in the total operation cost.

We recently also started to make our
virtual devices an accessible service upon
request, targeting app developers who
cannot afford numerous physical devices.
Preliminary feedback indicates that
compared to developers’ current testing
practices using a small number of physical
devices, our service helps detect 3–10×
more bugs. Also, the feedback shows that
our major conclusions can generalize to a
broader range of apps.

FIGURE 4. Precision and recall of the test
results on virtual devices, relative to those on
physical devices.

FIGURE 5. Comparisons between traditional and continuous mobile app testing workflows.

(a) Traditional app testing on physical farms. (b) Continuous app testing with virtual device farms.

9March 2024 | Volume 28, Issue 1 GetMobile

CONCLUSION
Our work shows that virtual devices can
provide immense utilities for effective
continuous app testing at scale, despite
their inherent difficulties of high-fidelity
emulation across diverse mobile systems and
hardware devices. Our experiences tell that,
with careful design, implementation, and
configuration, the essential fidelity gap can
be effectively closed to achieve high-fidelity
app testing. Although it is still hard to rule
out all possible discrepancies, high-fidelity
virtual device farms can substantially
improve developer productivity as well as
the sustainability of physical device farms.
Furthermore, the elasticity and accessibility
of virtual devices could enable new testing
infrastructures as services for mobile apps,
benefiting app developers who cannot afford
large physical device farms. n

Funding Acknowledgement
This work is supported in part by National
Key R&D Program of China under grant
2022YFB4500703, National Natural
Science Foundation of China under
grants 62332012, 61902211 and 62202266,
Microsoft Research Asia, and the Ant
Group. Tianyin Xu is supported in part by
NSF CNS-1956007 and CNS-2145295.

Hao Lin is a PhD student in the School of
Software at Tsinghua University. His research
interests are in high-performance and reliable
mobile systems.

Jiaxing Qiu is a PhD student in the School of
Software at Tsinghua University. His research
interests are in mobile systems and virtualization.

Hongyi Wang is a PhD student in the School of
Software at Tsinghua University. Her research
interests are in mobile systems and data mining.

Zhenhua Li is a tenured associate professor in
the School of Software at Tsinghua University.
His research areas cover network measurement,
mobile networking/emulation, and cloud
computing/storage.

Liangyi Gong is a senior engineer at the
Computer Network Information Center (CNIC),
Chinese Academy of Sciences. His research inter-
ests are in the broad areas of mobile networking,
system and security.

Di Gao is a PhD student in the School of Software
at Tsinghua University. His research interests are
in operating system kernel and virtualization.

Yunhao Liu is a full professor and the Dean of
Global Innovation Exchange (GIX), Tsinghua
University. His research interests include sensor
network, IoT, RFID, distributed systems, and
cloud computing.

Feng Qian is an associate professor in the Ming
Hsieh Department of Electrical and Computer
Engineering, Viterbi School of Engineering at
University of Southern California. His research
interests cover mobile networking, AR/VR, wear-
able computing, real-world system measure-
ments, and system security.

Zhao Zhang is a senior engineer in the AppInfra
Research Center at ByteDance. He mainly focuses
on automated and intelligent mobile app testing.

Ping Yang is the leader of the AppInfra Research
Center at ByteDance. Her research interests are in
software testing and AI for mobile infrastructure.

Tianyin Xu is an assistant professor in the
Department of Computer Science at the
University of Illinois at Urbana-Champaign.
His research focuses on techniques and tooling
for the design and implementation of reliable
and secure computer systems, especially those
that operate at the cloud and datacenter scale.

[EXPERIMENTAL METHODS]

REFERENCES
[1] B. Dolan-Gavitt, et al. 2011. Virtuoso: Narrowing

the semantic gap in virtual machine introspection.
Proceedings of S&P.

[2] L.K. Yan and H. Yin. 2012. DroidScope:
Seamlessly reconstructing the OS and Dalvik
semantic views for dynamic android malware
analysis. Proceedings of Security.

[3] A. Machiry, R. Tahiliani and M. Naik. 2013.
Dynodroid: An input generation system for
Android apps. Proceedings of FSE/ESEC.

[4] S.R. Choudhary, A. Gorla and A. Orso.
Automated test input generation for Android:
Are we there yet? 2015. Proceedings of ASE.

[5] S. Rasthofer, et al. Making Malory behave
maliciously: Targeted fuzzing of Android execution
environments. 2017. Proceedings of ICSE.

[6] L. Fan, et al. Large-Scale analysis of framework-
specific exceptions in Android apps. 2018.
Proceedings of ICSE.

[7] H. Cai, et al. 2019. A large-scale study of
application incompatibilities in Android.
Proceedings of ISSTA.

[8] T. Gu, et al. 2019. Practical GUI testing of
Android applications via model abstraction
and refinement. Proceedings of ICSE.

[9] Z. Dong, et al. 2020. Time-travel testing of
Android apps. Proceedings of ICSE.

[10] ByteDance. Douyin: Short Video Sharing
Platform. https://www.douyin.com/

[11] Google. Google Android Emulator. https://
developer.android.com/studio/run/emulator.

[12] D. Gao, et al. Trinity: High-performance
mobile emulation through graphics projection.
Proceedings of OSDI.

[13] I. Pustogarov, Q. Wu and D. Lie. Ex-vivo
dynamic analysis framework for Android device
drivers. Proceedings of S&P.

[14] Z. Lv, et al. Fastbot2: Reusable automated
model-based GUI testing for Android enhanced
by reinforcement learning. Proceedings of ASE.

