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m For more than a decade, researchers have been extensively exploring mobile app testing on  
virtual devices [1-9], which are software-emulated mobile devices running on commodity  
servers, in a similar vein as virtual machines (VM) in the cloud. Building on server virtualization, 
virtual devices naturally inherit the benefits of VM, such as scalability, elasticity, and cost efficiency.  

Moreover, virtualization enables useful features not offered by physical devices, such as service 
instrumentation [3], whole-system snapshot [9], and memory introspection [1,2], atop which a series  
of advanced testing and debugging techniques are developed.
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In contrast to the wide adoption of virtual 
devices in academic research, it remains 
controversial to rely on virtual devices for 
mobile app testing in practice, especially in 
industrial settings. The main concern comes 
from the inherent difficulties of high-fidelity 
device emulation, especially in an open 
mobile ecosystem, such as Android where 
hundreds of new phone models are released 
every year with heterogeneous hardware and 
highly customized software (as exemplified 
in Figure 1). Discrepancies between virtual 
devices and physical devices may lead to 
both escapes of bugs and false alarms. For 
mobile apps with a global user base, even 
seemingly small-numbered discrepancies 
could have magnified impacts. 

Consequently, major mobile app com- 
panies are instead spending millions of 
dollars to build and operate physical device 
farms, a dedicated infrastructure that hosts 
diverse phone models for comprehensive 
mobile app testing (Figure 2). For example, 
Douyin [10], a mobile app with 842 million 
users, is tested on a large-scale device farm 
before its version releases, which hosts a 
total of 5,918 different device models as of 
January 2022. The device farm costs more 
than 1M US dollars to build, and over 
0.6M dollars per year for device upgrades 
and replacements, not including the yearly 
salaries of the maintenance team, carrier 
plan expenses of cellular-capable devices, 
maintenance cost of Wi-Fi networks, power 
usage, etc.

To reduce the operation cost, we study 
the essential problems of using virtual 
device farms for large-scale mobile app 
testing in industrial settings. Our goal is to 
(1) quantitatively understand the fidelity of 
virtual devices, and (2) explore how to better 
utilize virtual device farms to drastically 
improve the efficiency and accessibility of 
large-scale mobile app testing.

From January 1 to March 31, 2022, 
we conducted a comparative study of 
the real-world test results of Douyin and 
nine other global-scale mobile apps on a 
massive commercial testing infrastructure 
that deploys a physical device farm and 
its virtualized counterpart. We show that 
high testing fidelity can be achieved by 
sensible design and implementation of 
virtual device farms. Most importantly, we 
reveal major discrepancies in non-standard, 
uncoordinated, and occasionally defective 
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vendor-specific services, drivers, and 
defense mechanisms, rather than hardware 
heterogeneity and system customizations. 
With that, we improve and use virtual device 
farms to build a continuous mobile app 
testing pipeline, which substantially improves 
the testing efficiency and accessibility in 
production. To benefit the community, 
we also publish the data and analysis code 
involved in this study at https://github.com/
android-emulation-testing/emu-fidelity-ae.

BUILDING THE VIRTUAL  
DEVICE FARM
Aiming to build a digital twin of the 
physical farm (that mimics the physical 
devices as much as possible) and understand 
the fidelity limitations of existing virtual 
devices, we make several important design 
decisions in terms of hardware, mobile OS 
and mobile app for our virtual device farm, 
based on state-of-the-art mobile emulation 
solutions. The overall architecture of our 
virtual devices is shown in Figure 3.

For the hardware infrastructure, we 
choose ARM servers for hosting virtual 
devices instead of more common x86 
servers. The rationales are twofold. First, 
with the recent development of the ARM 
server market, an ARM server is ~20% 
cheaper than an x86 server with the same 
number of CPU cores and memory/storage 

capacity. Second, the affinity between ARM 
servers and Android phones (all of which 
employ ARM SoCs) avoids the need for 
dynamic binary translation (DBT) from 
the ARM instructions of Android apps to 
the x86 instructions, particularly given 
that existing DBT support (Intel Houdini 
and Google libndk) for Android is neither 
complete (e.g., no DBT tool for Android 10) 
nor reliable (e.g., frequent crashes in certain 
apps’ native libraries).

For the mobile OS running inside virtual 
devices (i.e., guest OS), state-of-the-art 
mobile emulation techniques [11,12] usually 
use Framework-level hooking to achieve 
emulation of mobile hardware, such as Wi-Fi, 
GPU, Bluetooth, modem, etc. Instead, we 
leverage virtio devices available in Android’s 
Linux kernel for the emulation of high-
throughput I/O devices (e.g., storage and 
GPU); for the other hardware components 
(e.g., various sensors), we provide pure 
software emulation at the HAL. In this way, 
we avoid Framework-level modifications of 
the guest OS to preserve as much source-
level fidelity as possible. 

To match vendors’ app-related custom- 
izations, we also install the vendor-specific 
app service platforms, i.e., a collection of 
installable vendor apps and services, such 
as GMS (Google Mobile Services) and 
HMS (Huawei Mobile Services), on each 

FIGURE 1. Hardware and software dynamics of the Android ecosystem.
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virtual device. In contrast, we do not port 
other system-level components (system 
services and drivers) given their intricate 
dependencies on proprietary software 
and hardware. For example, Qualcomm 
drivers rely on the MSM Android Kernel 
Subsystems, and follow their own hardware 
specifications to implement register I/O  
and MMIO, which are proprietary and hard 
to emulate [13].

WHAT LEAD TO DISCREPANCIES?
We collected the test results of Douyin and 
nine other global-scale popular mobile apps 
(as detailed in Table 1) between January 1  
and March 31 in 2022. For each version 

release of an app, we run automated tests 
using state-of-the-art model-based UI testing 
tools [14] on both the physical and virtual 
device farms. 

Our study captures a total of 390,286 
test failure events on physical and virtual 
devices, with 873 root causes. From the large 
dataset, we have several important findings 
regarding the actual fidelity of virtual devices 
in practice, and the causes of discrepancies.

Overall Fidelity. First and foremost, we 
answer the fidelity concern by showing 
that the testing fidelity of virtual devices 
is surprisingly good. Among all the failure 
events captured on the physical devices, 

the vast majority (92.4%) of them are also 
captured on the corresponding virtual 
devices. Meanwhile, the false positives are 
low – only 1.8% of failure events on virtual 
devices do not manifest on the physical 
devices. Figure 4 shows the precision and 
recall per app. The fidelity characteristics 
are similar across the apps. This indicates 
that with sensible design, implementation, 
and configuration, virtual device farms can 
achieve high-fidelity mobile app testing for 
diverse device models.

Hardware-Level Discrepancies. At the 
hardware-level, counterintuitively, we 
show that the device emulator’s lack of 
support for vendor-specific hardware is 
not a major root cause of discrepancies. 
This is because Android HAL provides no 
abstractions for vendor-specific hardware, 
which is thus rarely accessed by mobile apps 
except vendors’ own apps. On the contrary, 

FIGURE 2. A physical device farm for 
comprehensive mobile app testing.

FIGURE 3. Architecture of our virtual devices.

App Functionality # Users # Releases Test Time

Douyin Video streaming shopping, social media, 842M 12 72 hours 
 map, education, etc. 

Douyin Lite Video streaming, communication, travel,  210M 12 72 hours 
 photography, etc. 

Xigua Video Video streaming, payment, shopping, 3D gaming, etc. 180M 12 72 hours

Toutiao News feed, shopping, web browsing, 3D gaming etc. 530M 12 72 hours

Toutiao Lite News feed, video streaming, security  130M 12 72 hours 
 checking, payment, etc. 

Lark Communication, email, video conference,  9.4M 5 30 hours 
 cloud storage, etc. 

Helo Social media, video streaming, communication, etc. 50M 12 72 hours

Fizzo Novel E-book, shopping, 3D gaming, social media, etc. 10M 5 30 hours

Xingfu Li  E-commerce, video streaming, finance,  7.5M 12 72 hours 
 communication, etc. 

Resso Music Music streaming, communication, social media, etc. 40M 9 54 hours

TABLE 1. Mobile apps used in this study

BUILDING ON SERVER 
VIRTUALIZATION, 
VIRTUAL DEVICES 
NATURALLY INHERIT 
THE BENEFITS OF VM, 
SUCH AS SCALABILITY, 
ELASTICITY, AND  
COST EFFICIENCY
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defective drivers of common hardware on 
physical devices contribute to 27.6% of the 
discrepancies. For example, a buggy null-
termination of C strings in the video codec 
module of Meizu’s systems causes the second 
most (9.1%) false positives. Similarly, a bug 
in the GPU drivers of certain old MediaTek 
SoCs incurs 8.9% of false negatives. 

Software-Level Discrepancies. At the 
software level, we find that vendor-specific 
Android framework customizations incur 
few discrepancies either. The compatibility 
is largely attributed to specifications enforced 
by Android CTS (Compatibility Test Suite) 
and VTS (Vendor Test Suite), which are unit-
level tests to ensure functional consistency 
of standard Android components after 
customizations. However, CTS and VTS do 
not check interfaces between stakeholders. 
Consequently, add-on system services often 
break specifications of other stakeholders. 
For example, an implicit long-to-int type 
conversion causing integer overflow during 
Android’s initialization of vendor-specific 
system services causes the most false 
negatives (14.9%).

Ecosystem Discrepancies. Finally, we find 
that there are considerable discrepancies 
in the occurrence frequency of certain 
failures among different regional mobile app 
ecosystems. For example, due to a lack of well-
regulated app stores like Google Play, mobile 
users of certain regions (e.g., China) are more 
prone to malicious apps. In reaction, many 
phone vendors in those regions deploy 
very aggressive defense mechanisms (e.g., 
force killing of apps upon long background 
activities) to limit app behaviors; however, 
such mechanisms cause side effects on 
regular apps, such as resource leaks and data 
corruption. Tests on related devices manifest 
up to 1,025× more frequent occurrences of 
certain failures than on other devices.

Improving Fidelity. To improve the virtual 
device fidelity, we did not limit ourselves to 
pure technical solutions, but also coordinate 
stakeholders in the mobile industry. At the 
virtual device side where we can easily apply 
patches, we align the implementations like 
graphics format interpretations and defense 
mechanisms. For proprietary vendor 
components of physical devices, we find that 
vendors are often not well motivated to fix 
seemingly app-specific issues. To convince 
them to apply our fixes, we develop a 
dynamic binary patching technique for 
quickly deploying our proposed fixes at 
runtime (without modifying sources). The 
fixes then serve as a proof of causality for 
motivating untrusting stakeholders. As a 
result of these efforts, the recall of virtual 
devices increases from 92.4% to 94.7%, and 
the precision grows from 98.2% to 99.1%.

VIRTUAL DEVICES FOR 
CONTINUOUS TESTING
With the deep understanding of testing 
fidelity, we take a step further to reshape the 
mobile app testing infrastructure of Douyin. 
Previously, all the tests of Douyin before its 
version releases were directly conducted on 
the physical device farm. The results were 
high operation cost and reduced device 
lifetime. 

With high-fidelity virtual devices, we 
developed a continuous mobile app testing 
pipeline to enable CI/CD, as illustrated 
in Figure 5. The idea is to combine the 
efficiency of virtual devices and the safety of 
physical devices – virtual devices are used 
to continuously test code and configuration 
changes to detect most functional bugs 
during development cycles, while physical 
devices are used only upon app releases as 

the last-level defense to capture escaped bugs.  
Since our continuous testing has captured 
most app-level bugs (which account for 93% 
of all bugs), tests on physical devices are 
much less frequently interrupted by failures.

We deployed and analyzed the 
continuous testing pipeline in production 
with the ten studied apps from January 1 
to February 28 in 2023. The new pipeline 
accelerates the end-to-end app development 
workflow by around 40%. Also, the device 
lifespan is lengthened by 1.5× on average 
due to reduced workload, and maintenance 
efforts are greatly reduced. The result is ~3× 
reduction in the total operation cost.

We recently also started to make our 
virtual devices an accessible service upon 
request, targeting app developers who 
cannot afford numerous physical devices. 
Preliminary feedback indicates that 
compared to developers’ current testing 
practices using a small number of physical 
devices, our service helps detect 3–10× 
more bugs. Also, the feedback shows that 
our major conclusions can generalize to a 
broader range of apps.

FIGURE 4. Precision and recall of the test 
results on virtual devices, relative to those on 
physical devices.

FIGURE 5. Comparisons between traditional and continuous mobile app testing workflows.

(a) Traditional app testing on physical farms. (b) Continuous app testing with virtual device farms.
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CONCLUSION
Our work shows that virtual devices can 
provide immense utilities for effective 
continuous app testing at scale, despite 
their inherent difficulties of high-fidelity 
emulation across diverse mobile systems and 
hardware devices. Our experiences tell that, 
with careful design, implementation, and 
configuration, the essential fidelity gap can 
be effectively closed to achieve high-fidelity 
app testing. Although it is still hard to rule 
out all possible discrepancies, high-fidelity 
virtual device farms can substantially 
improve developer productivity as well as 
the sustainability of physical device farms. 
Furthermore, the elasticity and accessibility 
of virtual devices could enable new testing 
infrastructures as services for mobile apps, 
benefiting app developers who cannot afford 
large physical device farms. n
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