
A Nationwide Study on Cellular Reliability:
Measurement, Analysis, and Enhancements

Yang Li†∗, Hao Lin†∗, Zhenhua Li†, Yunhao Liu†

Feng Qian§, Liangyi Gong†, Xianlong Xin‡, Tianyin Xu¶

†Tsinghua University ‡Xiaomi Technology Co. LTD
§University of Minnesota, Twin Cities ¶University of Illinois at Urbana-Champaign

ABSTRACT

With recent advances on cellular technologies (such as 5G) that push

the boundary of cellular performance, cellular reliability has become

a key concern of cellular technology adoption and deployment. How-

ever, this fundamental concern has never been addressed due to the

challenges of measuring cellular reliability on mobile devices and

the cost of conducting large-scale measurements. This paper closes

the knowledge gap by presenting the first large-scale, in-depth study

on cellular reliability with more than 70 million Android phones

across 34 different hardware models. Our study identifies the crit-

ical factors that affect cellular reliability and clears up misleading

intuitions indicated by common wisdom. In particular, our study

pinpoints that software reliability defects are among the main root

causes of cellular data connection failures. Our work provides ac-

tionable insights for improving cellular reliability at scale. More

importantly, we have built on our insights to develop enhancements

that effectively address cellular reliability issues with remarkable

real-world impact—our optimizations on Android’s cellular imple-

mentations have reduced 40% cellular connection failures for 5G

phones and 36% failure duration across all phones.

CCS CONCEPTS

• Networks → Mobile networks; Network reliability; Network

measurement; Network performance analysis;

KEYWORDS

Cellular Network; 5G Network; Reliability; Measurement; Mobile

Operating System; Cellular Connection Management

ACM Reference Format:

Yang Li, Hao Lin, Zhenhua Li, Yunhao Liu, Feng Qian, Liangyi Gong, Xi-

anlong Xin, Tianyin Xu. 2021. A Nationwide Study on Cellular Reliability:

Measurement, Analysis, and Enhancements. In ACM SIGCOMM 2021 Con-

ference (SIGCOMM ’21), August 23–27, 2021, Virtual Event, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3452296.3472908

∗Co-primary authors. Zhenhua Li and Yunhao Liu are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472908

1 INTRODUCTION

Cellular technologies have been the keystone of mobile systems and

applications that empower our daily lives, all the way from wireless

telephony and mobile Internet, to emerging applications such as ultra

high-definition (UHD) video streaming and AR/VR [24]. The rise

of 5G technologies has started to realize even higher-bandwidth and

lower-latency cellular networks, driving the grand vision of AI, IoT,

and self-driving vehicles. Specifically, 5G cellular networks support

up to 10 Gbps bandwidth (100× faster than 4G), 1 ms latency (cf.

30-50 ms for 4G), and connection density of 1000 devices per square

kilometer (100× more than 4G) [14].

While we have been mainly focusing on the performance of

cellular network technologies and the availability of cellular net-

work services, the cellular reliability of mobile devices has been

largely overlooked—without reliable cellular connections, perfor-

mance would be a mirage. From a mobile device’s perspective, cellu-

lar data connections can fail mostly in the following three ways1:

• Data_Setup_Error [4]2: The mobile device can receive signals

from a nearby base station (BS) but cannot establish a data con-

nection with the BS.

• Out_of_Service [8]: The data connection has been established,

but the mobile device cannot receive cellular data.

• Data_Stall [5]: The mobile device can receive cellular data, but

the data connection abnormally stalls (for longer than one minute

as suggested in Android).

However, cellular reliability is rarely studied or measured, but con-

stantly acts as an X-factor in discussion or decision making [14, 36].

Certainly, understanding cellular reliability at large is challenging.

First, as we will discuss in §2, existing mobile systems do not pro-

vide sufficient tracing and logging support for low-level cellular

connection components, creating significant barriers to precisely

capturing failure events and effectively diagnose their root causes.

Second, it is difficult and expensive to conduct large-scale reliability

measurements on real-world mobile devices; controlled lab studies

could help but hardly yield representative characteristics [59].

To close the knowledge gap, we collaborate with a major Android

phone vendor, Xiaomi Co. LTD, which serves hundreds of millions

of mobile users in China, to conduct a large-scale, in-depth study

on cellular reliability from the device perspective. Specifically, our

1We use Android terminologies throughout the paper.
2Strictly speaking, some Data_Setup_Error events defined in Android are not true
failures since they occur rationally due to BS overloading. Such false positives will be
carefully removed in our study.

https://doi.org/10.1145/3452296.3472908
https://doi.org/10.1145/3452296.3472908

goal is to measure the prevalence and severity of cellular reliabil-

ity problems perceived by user devices and reveal the root causes

of cellular (data connection) failures, including Data_Setup_Error,

Out_of_Service, Data_Stall, and so forth. Interestingly, understand-

ing cellular reliability turns out to be well aligned with the business

need of Xiaomi, as cellular connection issues were a major con-

tributor to their customer reports, but had been elusive problems

for Xiaomi engineers. Therefore, we have the common interests in

understanding cellular failures and improving cellular reliability.

Measurement. We build a continuous monitoring infrastructure on

top of a customized Android system called Android-MOD. Android-

MOD records system-level traces (without requiring root privileges)

upon the occurrence of suspicious cellular failure events. To extract

true failure events and collect diagnostic information, we instrument

relevant system services to record detailed device/network state

information and carefully filter out false positives.

We invited all users of Xiaomi to participate in the measurement

study by installing Android-MOD on their phones, and finally 70M

users opted in and shared data with us for eight months (Jan.–Aug.

2020). The dataset involves 34 different models of Android phones, 3

mobile ISPs (referred to as ISP-A: China Mobile, ISP-B: China Tele-

com, and ISP-C: China Unicom), and 5.3M BSes. All the data were

collected with informed consent of opt-in users, and no personally

identifiable information (PII) was collected during the measurement.

Analysis. Our measurement reveals that cellular failures are preva-

lent on all the 34 models of devices. For each model, 0.15%–45%

(averaging at 23%) of the devices have experienced at least one

cellular failure. On average, as many as 33 failures occur to a device

during the measurement, and a failure lasts for as long as 3.1 minutes.

Newer OS versions (e.g., Android 10) and communication modules

(e.g., 5G modules) substantially aggravate the situation, while better

hardware does not seem to relieve the situation. In particular, our

results indicate that cellular failures are mainly caused by software

reliability defects rather than inexpensive hardware, e.g., the im-

plementation that blindly prioritizes 5G connection in Android 10

greatly impairs the stability of cellular connections.

Moreover, we find that most (94%) failure duration is owing to

Data_Stall failures. To recover a cellular connection from Data_Stall

failures, Android implements a three-stage progressive mechanism

which sequentially tries light (cleaning up and restarting the current

connection), moderate (re-registering into the network), and heavy

(restarting the radio component) recovery techniques based on one-

minute probations. Our data show that for the majority of Data_Stall

failures, either the user device can automatically fix them in less

amount of time, or the user would manually reset the connection

after ∼30 seconds. Thus, the three-stage design is not efficient.

From the viewpoint of ISPs, cellular failures occur more preva-

lently (27.1%) on ISP-B users than on ISP-A users (20.1%) and

ISP-C users (14.7%) due to the inferior signal coverage of ISP-B.

Counter-intuitively, while both the number and overall signal cov-

erage of 3G BSes are smaller than those of 2G or 4G BSes, the

prevalence of failures on 3G BSes is lower than that on 2G or 4G

BSes. This can be ascribed to the fact that 3G access is usually not

preferred when 4G access is available and its signal coverage is

worse than that of 2G when 4G access is unavailable, and thus is

confronted with less resource contention.

With respect to BSes, common wisdom suggests a positive corre-

lation between cellular reliability and received signal strength (RSS).

However, our measurement shows the opposite when there is excel-

lent (level 5) RSS—failures are in fact more likely to happen in this

case than when there is weaker (level 1 to 4) RSS. We clear up the

mystery—most of the excellent-RSS failures come from densely-

deployed BSes around public transport hubs; while such BSes offer

excellent RSS, they increase the control-channel overhead of LTE

mobility management [12, 29], causing frequent failures tagged with

EMM_ACCESS_BARRED, INVALID_EMM_STATE, etc. [3].

Enhancements. Our study provides insights to improve cellular re-

liability at scale 1) for mobile phone vendors to roll out 5G modules

and new OS versions, 2) for mobile ISPs to make use of radio re-

sources, e.g., utilizing “idle” 3G BSes and planning BS deployment

density in public areas, and 3) for promoting cross-ISP infrastructure.

More importantly, some of our enhancements have been practi-

cally deployed with real-world impact. First, instead of aggressively

pursuing the potential high data rate of 5G, we optimize the radio

access technology (RAT) selection policy in Android 10 by judi-

ciously considering the likelihood of cellular failures and meanwhile

utilizing the novel 4G/5G dual-connectivity mechanism [47].

Second, we optimize the three-stage cellular-connection recovery

mechanism in Android by replacing its fixed-time trigger with a flex-

ible and dynamic trigger based on a time-inhomogeneous Markov

process [49] (TIMP). TIMP advances the traditional Markov process

that can only model a stationary process, to model complex state

transitions in a time-sensitive manner. The TIMP-based recovery

helps most user devices recover more quickly (the three probations

are adaptively tuned as 21, 6 and 16 seconds, each being much

shorter than one minute) and effectively with negligible overhead.

Since the release of the patched Android-MOD system with the

above two-fold optimizations (adopted by 40% of the 70M opt-in

users in late Oct. 2020), we have successfully reduced 40% cellular

failures for 5G phones (without sacrificing the data rate) and 38%

Data_Stall duration (equivalent to 36% total failure duration) for all

phones during Nov.–Dec. 2020.

Code Release. The failure diagnosis and fixing code involved in

the study is publicly available at https://CellularReliability.github.io.

2 STUDY METHODOLOGY

We conducted a large-scale measurement study on cellular failures

based on continuously monitoring 70M opt-in user devices over

eight months. The study is enabled by Android-MOD, a customized

Android system that provides lightweight, privacy-preserving tracing

and analysis beyond the capability of the vanilla Android system.

2.1 Limitations of Vanilla Android

Cellular connection management exists as a system service in An-

droid, where the life cycle of a cellular data connection is modeled

by a state machine [2] as shown in Figure 1: a total of five states are

used to represent different stages of a cellular connection, including

Inactive, Activating, Retrying, Active, and Disconnect. As one state

changes to another, Android provides quite a few facilities to moni-

tor various problems during the process, most of which are related

to our targeted cellular failures.

https://CellularReliability.github.io

DisconnectDisconnect

ActivatingActivatingInactiveInactive

RetryingRetrying

ActiveActive
Connection Setup Setup Completion

Setup Error

Exceeding Max

Number of Retries Setup Completion

Disconnect

Initiation

Disconnect

Completion

Connection

Setup

Figure 1: The state machine that models the life cycle of a cellu-

lar data connection in Android.

First of all, if a user device fails to establish a data connection to

a nearby base station (BS), a Data_Setup_Error [4] failure event will

be reported to relevant system services (but not to user-space apps);

then, a retry attempt will be initiated, trying to establish the data

connection once again. Here the failure may occur at the physical

layer (e.g., radio signal loss), the data link or MAC layer (e.g., device

authentication failure), and/or the network layer (e.g., IP address

allocation failure). Upon any failure, an error code will be gener-

ated by the underlying radio interface, based on either the received

responses to the issued connection-setup negotiation requests (if

any) or the return values of the modem commands executed by the

underlying radio interface.

Further, if the data connection is successfully established but the

user device still cannot access the cellular network, i.e., the user

device cannot send/receive data to/from outside, Android will mark

its current service state as Out_of_Service [8]. Worse still, even if

data can be sent to or received from outside, sometimes the data

connection can abnormally stall for a long time, incurring annoying

user experience. This phenomenon is termed as Data_Stall [5] in

Android. In detail, when there have been over 10 outbound TCP

segments but not a single inbound TCP segment during the last

minute (the statistics are made by the Linux kernel in its network

protocol stack), a Data_Stall failure is reported to both relevant

system services and user-space apps. In addition, there are other

types of failures we do not elaborate here but will mention when

necessary in the remaining parts.

For all the abovementioned failure events, Android currently pro-

vides basic notification interfaces with which the relevant system

services can register themselves as the event listeners. Nevertheless,

only a part of the interfaces (including the Data_Stall notifier and

Out_of_Service checker) are exposed to user-space apps, and some

interfaces are inaccessible even with root privileges. Therefore, we

are unable to capture all the concerned failure events by simply

developing an Android app. To make the matter worse, some of the

abovementioned failure events are in fact not true failures. For ex-

ample, a data connection setup request may be rejected by a nearby

BS which is currently overloaded; in this case, a Data_Setup_Error

event will be reported but does not imply a true failure. Additionally,

the event-related information reported by Android is often insuffi-

cient for in-depth analysis. In fact, Android typically only reports

the occurrence of a failure event without capturing other important

in-situ information, such as the desired BS information, received

signal strength (RSS), protocol error code, and network state.

2.2 Continuous Monitoring Infrastructure

To practically address the above-described multifold challenges, we

customize the vanilla Android system for continuously acquiring

fine-grained system-level traces upon the occurrence of suspicious

cellular failure events, which are otherwise impossible to obtain but

are crucial to our study requirements. The resulting system is called

Android-MOD, in which we focus on modifying the Framework-

layer programs. We do not make modifications to the hardware

abstract layer (HAL) or the kernel layer—while HAL/kernel modifi-

cations can help us collect more underlying and detailed data, they

can easily impair the system stability and robustness in practice

(even with careful testing) [16].

At a high level, our modifications are made to realize three goals:

1) system service instrumentation, 2) concerned information logging,

and 3) failure recovery monitoring. Specifically, we first instrument

the Android system service of cellular connection management by

registering our developed monitoring service as its event listener,

so that all the occurrences of Data_Setup_Error, Out_of_Service,

Data_Stall, and other concerned failure events can be captured in

real time. It is worth noting that when instrumenting the service,

we carefully rule out a variety of false failure events (a.k.a., false

positives), such as connection disruption by incoming voice calls,

service suspension due to insufficient account balance, and manual

disconnection of the network.

Second, we need to record important radio- and BS-related infor-

mation upon the occurrence of a cellular failure for in-depth analysis.

Such information includes the current radio access technology (RAT,

e.g., 4G LTE or 5G NR), received signal strength (RSS), access point

names (APNs), and BS ID that consists of Mobile Country Code

(MCC), Mobile Network Code (MNC), Location Area Code (LAC),

and Cell Identity (CID)3. All these information can be accessed

via the APIs provided by the Android TelephonyManager and Ser-

viceState services. Besides, we record the protocol error codes for

Data_Setup_Error events to facilitate our uncovering the root causes,

and to further rule out possible false positives such as rational setup

rejection due to BS overloading. In particular, we have carefully

analyzed all the 344 cellular connection-related error codes defined

in Android [3], and recognized tens of error codes that are highly

correlated with false positives as critical auxiliary information.

Third, we note that the existing Data_Stall detection mechanism

in Android cannot provide an accurate measurement of a Data_Stall

failure’s duration, given its fixed detection time (as long as one

minute). According to our observations (detailed later in §3.1), in

most (>80%) cases a Data_Stall failure lasts for <300 seconds, so the

incurred measurement error is non-trivial relative to the Data_Stall

duration. Also, detection results of this mechanism may contain false

positives for lack of crucial knowledge regarding the current states

of network stack and Internet connectivity.

To address these issues, we build a network-state probing com-

ponent in Android-MOD. Once a suspicious Data_Stall failure is

3For some CDMA BSes, System Identity (SID), Network Identity (NID), and Base
Station Identity (BID) are recorded instead of MNC, LAC, and CID.

detected, this component checks the states of network stack and

Internet connectivity by simultaneously sending an ICMP message

to the local IP address (127.0.0.1), as well as sending an ICMP

message and a DNS query (for our dedicated test server’s domain

name) to each of the user device’s assigned DNS server(s). If the

ICMP message intended for the local IP address reaches a timeout

(empirically configured as one second as suggested by the ICMP pro-

tocol [46]), we know that the problem lies at the system side rather

than the network side (hence a false positive case). In practice, such

false positives typically involve erroneous firewall configurations,

problematic proxy settings, and modem driver failures. Otherwise, if

all the DNS queries reach a timeout (empirically configured as five

seconds as suggested by the DNS protocol [22]), we know the prob-

lem lies at the network side. However, if timeouts only occur to the

DNS queries but not to the ICMP messages sent to the DNS servers,

we figure out that the problem is induced by the unavailability of

DNS resolution service (also a false positive case).

The above probing process needs at most five seconds, given

the one-second timeout for the ICMP message deliveries and five-

second timeout for the DNS queries. If the probing results indicate

that Data_Stall has not been fixed, we will initiate a new probing

process; otherwise, we add up the duration values recorded in all the

previous probing processes (since the beginning of this Data_Stall

failure) to approximate the actual duration of this Data_Stall failure.

Thus, our measurement error is at most five seconds (<< 1 minute).

Furthermore, to avoid excessive network overhead, if a Data_Stall

failure lasts for longer than 1200 seconds (in few than 10% cases,

as illustrated later in §3.1), we will multiplicatively increase the

timeout values by a factor of two in the next probing process to

balance the incurred error and overhead. Finally, if either timeout

value grows to longer than one minute, we will revert to Android’s

original detection mechanism to estimate the Data_Stall duration.

All in all, our modifications to Android involve system-level

information logging (primarily through existing interfaces) and light-

weight network probing activities. For even a low-end Android

phone at the moment, Android-MOD only incurs <2% CPU utiliza-

tion, <40 KB of memory usage, and <100 KB of storage space;

the network usage per month is <100 KB. Note that here the CPU

utilization is measured by the portion of additional CPU overhead

induced by our monitoring infrastructure within the duration of de-

tected failures, rather than during the entire measurement process.

As a matter of fact, in daily usages without cellular failures, our

monitoring infrastructure is dormant at the client side and thus does

not incur additional CPU overhead.

On the other hand, we do notice that for a small fraction (<1%)

of user devices, they experience as many as 40,000+ failures (as to a

single user) in a month. Even so, the incurred CPU, memory, and

storage overheads are still acceptable: <8% CPU utilization, <2 MB

of memory usage, and <20 MB of storage space; the network usage

per month can reach 20 MB, so the recorded data are uploaded to

our backend server only when there is WiFi connectivity.

Finally, the network overhead incurred by our measurement is

fairly low even in a cumulative sense. For all the 70M users that

participated in our study, the aggregate network overhead per second

on the entire cellular networks of the three involved ISPs was below

500 KB, and thus had negligible influence on the performance,

availability, and reliability of the studied cellular networks.

2.3 Large-Scale Deployment

With the continuous monitoring infrastructure, in Dec. 2019 we

invited all the users of Xiaomi to participate in our measurement

study of cellular reliability by installing Android-MOD on their

phones. Note that the installation is a lightweight update that will not

affect their installed apps, existing data, and OS version. Eventually,

70,965,549 users opted in and collected data for us for eight months

(Jan.–Aug. 2020). All data are compressed and uploaded to our

backend server for centralized analysis.

Ethical Concerns. All analysis tasks in this study comply with the

agreement established between Xiaomi and its users. The users who

participated in the study opted-in as volunteers with informed con-

sent, the analysis was conducted under a well-established IRB, and

no personally identifiable information (e.g., phone number, IMEI,

and IMSI) was collected. We never (and have no way to) link col-

lected information to users’ true identities.

3 MEASUREMENT RESULTS

In this section, we first present the general characteristics of our

collected measurement data (§3.1). Then, to systematically describe

cellular failures and their underlying causes in a more readable

manner, we present our data analysis results from the viewpoints of

Android phones (§3.2) and ISPs/BSes (§3.3), respectively.

3.1 General Statistics

With the crowdsourcing help from 70,965,549 Android-MOD user

devices with 34 different phone models (as listed in Table 1), we

record the system-level traces with regard to 2,315,314,213 cellu-

lar failures, involving 16,183,145 user devices, 3 mobile ISPs and

5,273,972 base stations. To the best of our knowledge, this is so far

the largest dataset regarding cellular failures in the wild.

First of all, we are concerned with the prevalence and frequency

of cellular failures: the former denotes the fraction of devices that

experience at least one cellular failure, and the latter is the average

number of cellular failures experienced per phone. Our measurement

results reveal that cellular failures occur prevalently on all the 34

studied phone models. As indicated in Table 1 and Figure 2, on

different models of phones the prevalence varies from 0.15% to 45%

and averages at 23%. More notably, as many as 33 cellular failures

occur to a phone on average during our 8-month measurement (see

Figure 3), and the average number of cellular failures happening to

a specific model varies from 2.3 to 90.2 (see Table 1). In a nutshell,

while the majority (77%) of phones do not report cellular failures

during the measurement, the maximum number of cellular failures

happening to a single phone can reach 198,228 (see Figure 3).

Apart from prevalence and frequency, we are also concerned with

the duration of cellular failures. As shown in Figure 4, the average

duration of cellular failures is as long as 188 seconds (= 3.1 minutes).

This is an astonishing value in case of emergency, considering that a

victim user is expected to be out of contact for 3.1 minutes. In detail,

the duration distribution is highly skewed—while 70.8% cellular

failures last for less than 30 seconds, the maximum duration can

reach 91,770 seconds (= 25.5 hours). Closer examination reveals

that such long-duration failures typically occur in remote regions

1 4 7 10 13 16 19 22 25 28 31 34
Phone Model

0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ev

al
en

ce

All Failures
Data_Stall
Data_Setup_Error
Out_of_Service

Figure 2: Prevalence of cellular failures

on each model of phones.

0 200 400 600 800 1,000
Number of Failures

0.7

0.75

0.8

0.85

0.9

0.95

1

C
D

F

Mean=14
Max=118,891

Mean=16
Max=138,076

Mean=3
Max=102,696

Mean=33
Max=198,228

Out_of_Service
Data_Setup_Error
Data_Stall
All Failures

Figure 3: Number of cellular failures hap-

pening to a single phone.

0 200 400 600 800 1000 1200
Failure Duration (s)

0

0.2

0.4

0.6

0.8

1

C
D

F Min=0
Median=6
Mean=188
Max=91,770

Figure 4: Duration of our recorded cellu-

lar failures.

Table 1: Hardware configurations of our studied 34 phone mod-

els, generally ordered from low-end to high-end. The rightmost

five columns correspond to the phone’s 5G capability (5G), An-

droid version (Version), user percentage (Users), fraction of de-

vices that experience at least one cellular failure (Prevalence),

and average number of cellular failures experienced per phone

(Frequency) during our measurement, respectively.

Model CPU Memory Storage 5G Version Users Prevalence Frequency

1 1.8 GHz 2 GB 16 GB – 10.0 2.71% 28% 35.9

2 1.95 GHz 2 GB 16 GB – 9.0 3.02% 13% 23.8

3 2 GHz 2 GB 16 GB – 9.0 7.31% 10% 13.8

4 2 GHz 3 GB 32 GB – 9.0 3.90% 19% 22.4

5 2 GHz 3 GB 32 GB – 9.0 2.85% 21% 28.2

6 2 GHz 3 GB 32 GB – 10.0 4.33% 4% 5.3

7 2 GHz 3 GB 32 GB – 10.0 1.44% 5% 6.4

8 2 GHz 3 GB 32 GB – 9.0 4.07% 0.15% 2.3

9 2 GHz 3 GB 32 GB – 10.0 5.47% 2% 2.6

10 2.2 GHz 4 GB 32 GB – 9.0 5.78% 27% 36.8

11 1.8 GHz 4 GB 64 GB – 10.0 1.18% 25% 28.5

12 2 GHz 4 GB 64 GB – 10.0 1.44% 33% 43.5

13 2.05 GHz 6 GB 64 GB – 10.0 5.39% 26% 18.7

14 2.2 GHz 6 GB 64 GB – 9.0 2.98% 15% 17.9

15 2.2 GHz 4 GB 128 GB – 10.0 3.98% 25% 26.7

16 2.2 GHz 4 GB 128 GB – 10.0 3.02% 19% 28.0

17 2.2 GHz 6 GB 64 GB – 10.0 1.09% 28% 48.4

18 2.2 GHz 6 GB 64 GB – 10.0 0.26% 13% 38.8

19 2.2 GHz 6 GB 64 GB – 10.0 1.31% 24% 44.8

20 2.2 GHz 6 GB 64 GB – 10.0 0.57% 21% 33.0

21 2.2 GHz 6 GB 64 GB – 10.0 2.80% 36% 46.6

22 2.2 GHz 6 GB 128 GB – 9.0 0.44% 38% 61.1

23 2.4 GHz 6 GB 64 GB YES 10.0 0.84% 44% 49.6

24 2.4 GHz 6 GB 128 GB YES 10.0 3.25% 37% 38.0

25 2.45 GHz 6 GB 64 GB – 9.0 4.99% 14% 19.6

26 2.45 GHz 6 GB 64 GB – 9.0 2.15% 17% 24.6

27 2.8 GHz 6 GB 64 GB – 10.0 1.84% 22% 54.2

28 2.8 GHz 6 GB 64 GB – 10.0 7.14% 28% 58.1

29 2.8 GHz 6 GB 64 GB – 10.0 1.31% 30% 65.1

30 2.8 GHz 6 GB 128 GB – 10.0 1.01% 30% 90.2

31 2.84 GHz 6 GB 64 GB – 10.0 1.88% 28% 61.7

32 2.84 GHz 6 GB 64 GB – 10.0 3.63% 29% 57.8

33 2.84 GHz 8 GB 128 GB YES 10.0 4.78% 32% 70.9

34 2.84 GHz 8 GB 256 GB YES 10.0 1.84% 25% 79.3

such as mountain and offshore areas, where the BSes have been long

neglected and in disrepair.

Among the 2.32 billion collected cellular failures, the vast major-

ity (>99%) include Data_Setup_Error, Out_of_Service, and Data_Stall

events. The remainder (<1%) are mainly related to the traditional

short message and voice call services that are less frequently used

today (e.g., short message sending failure tagged by Android as

RIL_SMS_SEND_FAIL_RETRY [7]), whose functions and enabling

techniques have been stable for nearly 20 years. As depicted in

Figure 3, an average of 16 Data_Setup_Error, 14 Data_Stall, and 3

Out_of_Service events occur to a single phone in our study. While

most (95%) phones do not experience Out_of_Service events, the

maximum number of Out_of_Service events on a single phone is

as large as 102,696. In particular, Data_Stall failures lead to the

vast majority of (94%) cellular failure duration among all the col-

lected cellular failure events, which will be explained in §3.2 and

practically mitigated in §4.2.

3.2 Android Phone Landscape

In this part, we go deeper into the internals of user devices with

respect to their hardware, software and OS components that may

pose impact on cellular failures, especially those with regard to the

emerging technologies.

Hardware Configuration. Intuitively, using higher-end cell phones

should help to mitigate cellular failures as they usually imply the

adoption of more reliable and/or powerful hardware components.

However, our measurement results generally indicate the opposite:

as shown in Figure 2 and Figure 5, both the prevalence and frequency

of cellular failures tend to increase with better hardware configura-

tions. To demystify this, we examine the correlation between each

feature (in Table 1) and the prevalence/frequency of cellular failures,

finding that two features, i.e., 5G capability and Android version,

have significant influence on the occurrence of cellular failures.

Four out of the 34 phone models are equipped with 5G modems,

in which Models 23 and 24 have typical hardware configurations at

the moment while Models 33 and 34 have the best. As illustrated in

Figure 6 and Figure 7, both the prevalence and frequency of cellular

failures on 5G phones are higher than those on non-5G phones.

This suggests that the emerging 5G communication modules have

negative impact on the reliability of cellular connections, probably

due to the high workload they inflict on the network stack and system

kernel of Android for processing large volumes of inbound/outbound

data in short time, as well as their relatively immature production

state at the moment.

Android Version. The studied 34 phone models use either An-

droid 9 or Android 10, which are released in Aug. 2018 and Sep.

2019, respectively. Android 11 was recently released in Sep. 2020

and thus was not covered in our study (from Jan. to Aug. 2020).

We note that as Android evolves from version 9 to 10, a number

of new functions and performance improvements have been imple-

mented [1]. Although these updates are supposed to benefit users, we

unexpectedly find that both the prevalence and frequency of cellular

Phone Model
0

20

40

60

80

100

Fr
eq

ue
nc

y

All Failures
Data_Stall
Data_Setup_Error
Out_of_Service

1 4 7 10 13 16 19 22 25 28 31 34

Figure 5: Frequency of cellular failures

on each model of phones.

w/o 5G module w/ 5G module
Phone Model Type

0

0.1

0.2

0.3

0.4

0.5

Pr
ev

al
en

ce

Data_Setup_Error
Out_of_Service
Data_Stall
All Failures

Figure 6: Prevalence of cellular failures

on models w/ and w/o the 5G module.

w/o 5G module w/ 5G module
Phone Model Type

0

10

20

30

40

50

60

70

80

Fr
eq

ue
nc

y

Data_Setup_Error
Out_of_Service
Data_Stall
All Failures

Figure 7: Frequency of cellular failures

on models w/ and w/o the 5G module.

9.0 10.0
Android Version

0

0.05

0.1

0.15

0.2

0.25

0.3

Pr
ev

al
en

ce

Data_Setup_Error
Out_of_Service
Data_Stall
All Failures

Figure 8: Prevalence of cellular failures

for different Android versions.

9.0 Android Version 10.0
0

10

20

30

40

50

Fr
eq

ue
nc

y

Data_Setup_Error
Out_of_Service
Data_Stall
All Failures

Figure 9: Frequency of cellular failures

for different Android versions.

0 30 60 90 120 150
Data_Stall Auto-Recovery Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F Min=0
Median=3
Mean=176
Max=70,860

Figure 10: Most Data_Stall failures are

automatically fixed in a few seconds.

failures on Android 10 phones are higher than those on Android

9 phones, as demonstrated in Figure 8 and Figure 9. We attribute

this primarily to the better stability and robustness of Android 9, as

Android 10 was still undergoing constant fixes and patches during

our measurement 4.

Adapting to the emerging 5G techniques, Android 10 added con-

siderable dedicated services, network functions, and programming

APIs [6]. While these novelties can enable various high-demanding

applications such as UHD video streaming and AR/VR [24], they

inevitably bring defects, risks, and vulnerabilities to the cellular

connection management modules of Android from the perspective

of software engineering.

In particular, we note that in the RAT (radio access technology)

selection policy of Android 10, 5G is blindly preferred to the other

RATs, probably aiming to maximize the potential benefit of 5G,

especially its remarkably higher peak bandwidth. Nevertheless, this

policy could incur severe cellular failures. For example, when a user

device can establish either a 5G connection with low received signal

strength (RSS) or a 4G connection with high RSS, the preferred

4Given that 5G phone models can only run Android 10 (since Android 9 does not
support 5G), to make an independent analysis and a fair comparison, when comparing
the prevalence and frequency of cellular failures on 5G and non-5G models earlier in
this section, we should only select non-5G models running Android 10. Similarly, for a
fair comparison between Android 9 and Android 10 regarding their impacts on cellular
failures, we should only compare the phone models running Android 9 with the non-5G
models running Android 10. Since the corresponding fair-comparison results are similar
to those shown in Figure 6, Figure 7, Figure 8, and Figure 9, we choose not to plot
additional figures to demonstrate them.

usage of 5G might bring rather unstable cellular performance and

even cellular failures, although the co-existing 4G connection might

have better cellular performance. Worse still, this example is not a

rare case but happens frequently in our everyday life, thus leading to

a great number of cellular failures on 5G phones.

Data_Setup_Error Decomposition. When a data connection setup

fails, an error code will be generated by the radio interface to de-

scribe the reasons of the Data_Setup_Error failure, based on the

responses to the issued setup requests (if any) or the return values

of executed modem commands. In Android, a total of 344 error

codes are defined. In Table 2 we list the top 10 most common er-

ror codes (after removing false positives) and their corresponding

meanings and percentages. As shown, the top 10 codes account for

nearly half (46.7%) of the Data_Setup_Error failures. In addition,

we find that these error codes and their related causes are quite

diverse, covering cellular failures occurring at the physical layer

(e.g., SIGNAL_LOST and IRAT_HANDOVER_FAILED), the data link

or MAC layer (e.g., PPP_TIMEOUT), and the network layer (e.g.,

INVALID_EMM_STATE).

Data_Stall Recovery. Recall that in Android, when there have

been over 10 outbound TCP segments but not a single inbound

TCP segment during the last minute, a Data_Stall event happens [5].

According to our measurement, ∼40% of the cellular failures are

Data_Stall events, which however account for 94% duration of all

cellular failures, thus posing broad and disruptive impact on user

Table 2: Brief description and percentage of top 10 most common Data_Setup_Error error codes in Android.

Error Code Brief Description Percentage

GPRS_REGISTRATION_FAIL Failures due to unsuccessful GPRS registration 12.8%

SIGNAL_LOST Failures due to network/modem disconnection 7.2%

NO_SERVICE No service during connection setup 6.5%

INVALID_EMM_STATE Invalid state of EPS Mobility Management in LTE 4.9%

UNPREFERRED_RAT Current RAT is no longer the preferred RAT 4.3%

PPP_TIMEOUT Failures at the Peer-to-Peer Protocol setup stage due to a timeout 3.5%

NO_HYBRID_HDR_SERVICE No hybrid High-Data-Rate service 2.2%

PDP_LOWERLAYER_ERROR Packet Data Protocol error due to radio resource control failures or a forbidden PLMN 1.9%

MAX_ACCESS_PROBE Exceeding maximum number of access probes 1.8%

IRAT_HANDOVER_FAILED Unsuccessful transfer of data call during an Inter-RAT handover 1.6%

Figure 11: BS Ranking by the experi-

enced number of cellular failures.

A B C
ISP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pr
ev

al
en

ce

Data_Setup_Error
Out_of_Service
Data_Stall
All Failures

Figure 12: Prevalence of cellular failures

for different ISPs’ users.

A B C
ISP

0

10

20

30

40

50

60

70

80

90

Fr
eq

ue
nc

y

Data_Setup_Error
Out_of_Service
Data_Stall
All Failures

Figure 13: Frequency of cellular failures

for different ISPs’ users.

experiences. To tackle the problem, when a Data_Stall event is de-

tected, Android launches the three-stage progressive mechanism

that sequentially tries light (cleaning up and restarting the current

connection), moderate (re-registering into the network), and heavy

(restarting the radio component) recovery techniques. Before carry-

ing out each of the above operations, Android would wait for one

minute to watch whether the problem has already been fixed (by

constantly examining whether Data_Stall still exists).

In practice, we observe that this mechanism is quite effective—

once executed, even the first-stage, lightweight operation (clean-

ing up the current connection) can fix the problem in 75% cases.

Nevertheless, our measurement shows that this mechanism is overly

conservative and thus rather time-consuming. In fact, for the majority

of Data_Stall events, the user device can automatically recover them

in less time, as illustrated in Figure 10. For example, 60% Data_Stall

failures are automatically fixed in just 10 seconds. Also, we notice

that the victim user would manually reset the data connection within

∼30 seconds (according to our sampling user survey). Therefore,

the one-minute “probation” adopted by Android is unnecessarily

long, rendering the recovery mechanism to be neither efficient nor

user-friendly in practice.

3.3 ISP and Base Station Landscape

As mentioned in §3.1, our measurement captures a total of 2.32

billion cellular failure events with regard to 5.3M BSes. In this part,

we look at cellular failures from the viewpoint of ISPs and BSes,

by considering the geographic locations, ISP discrepancies, radio

access technologies, and signal strengths.

Geographic Location. By ranking the involved BSes with their

experienced number of cellular failures (in descending order), we

observe a Zipf-like [60] skewed distribution as depicted in Figure 11

(where 𝑎 = 0.82 and 𝑏 = 17.12). The median and average numbers

are 1 and 444 respectively, while the maximum number reaches

8,941,860. We then delve into the 10,000 top ranking BSes, and find

that they are mostly located in crowded urban areas. Hence, they are

confronted with essentially more ambient interferences and heavier

cellular access workloads, both of which aggravate the problems.

ISP Discrepancy. The BSes involved in our study belong to three

mobile ISPs, referred to as ISP-A, ISP-B, and ISP-C. Specifically,

44.8%, 29.4%, and 25.8% BSes belong to ISP-A, ISP-B, and ISP-C,

respectively. From Figure 12, we can see that cellular failures occur

more prevalently (27.1%) on ISP-B’s users than on ISP-A’s (20.1%)

and ISP-C’s (14.7%), mainly due to the inferior signal coverage of

ISP-B’s BSes. In detail, while ISP-B’s BSes are a bit more than

ISP-C’s, to our knowledge most of ISP-B’s BSes have a smaller

signal coverage because they usually use a higher radio frequency.

The situation is similar in terms of frequency, as shown in Figure 13.

Radio Access Technology (RAT). Among the involved BSes,

23.4%, 10.2%, 65.2%, and 7.3% support 2G, 3G, 4G, and 5G access,

respectively. Here the four percentages add up to more than 100%

because some BSes simultaneously support multiple RATs. While

2G 3G 4G 5G
Radio Access Technology

0

0.2

0.4

0.6

0.8

1

Pr
ev

al
en

ce

Figure 14: Prevalence of cellular failures

on 2G, 3G, 4G and 5G BSes.

0 1 2 3 4 5
Signal Level

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
re

va
le

nc
e

All Failures
Data_Setup_Error

Data_Stall
Out_of_Service

Figure 15: Normalized prevalence (or

simply likelihood) of cellular failures for

different signal levels.

0 1 2 3 4 5
Signal Level

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
re

va
le

nc
e

5G
4G

Figure 16: Normalized prevalence of cel-

lular failures for different 4G/5G signal

levels.

both the number and overall signal coverage of 3G BSes are smaller

than those of 2G or 4G BSes, we observe that the prevalence of

cellular failures on 3G BSes is lower than that on 2G or 4G BSes,

as indicated in Figure 14. This is probably because 3G access is

usually not favored by user devices when 4G access is available, and

the signal coverage of 3G is much worse than that of 2G when 4G

access is unavailable. In other words, 3G networks currently face

less resource contention from the users (i.e., relatively “idle”) and

thus manifest fewer cellular failures.

Received Signal Strength (RSS). In common sense, RSS is a key

factor that impacts the reliability of cellular service, and a higher

RSS level (or simply signal level) is usually expected to come with

better service reliability. However, our measurement results in Fig-

ure 15 refute this common understanding by revealing that excellent

RSS seems to increase the likelihood of cellular failures. As the

signal level increases from 0 (the worst) to 4 (good), the normalized

prevalence of cellular failures monotonously decreases. Here the

“normalized” prevalence denotes the regular prevalence (as explained

and computed in Table 1) divided by the total time during which

the device is connected to a BS. We have to use the normalized

prevalence because the durations of different signal levels can differ

greatly from each other; in order to account for this discrepancy,

we divide each prevalence by its average duration to achieve a fair

comparison (the duration data are also provided by Xiaomi based

on a nationwide measurement). On the other hand, when the signal

level goes to 5 (excellent), the normalized prevalence of cellular

failures suddenly grows to larger than each case of level 1 to 4.

To demystify this counter-intuitive phenomenon, we carefully ex-

amine a series of in-situ information corresponding to such excellent-

RSS cellular failures, including the BS location, serving ISP, RAT,

error code, etc.. As a result, we find that this phenomenon usually

happens around public transport hubs, where the nearby BSes tend

to be problematic simultaneously, regardless of the serving ISPs

and RATs. Actually, ISPs often choose to densely deploy their BSes

around a public transport hub so as to better cope with the large vol-

ume of human traffic. Owing to this special BS deployment strategy,

the nearby user devices can typically have excellent (level 5) RSS.

On the other hand, such densely deployed BSes could bring non-

trivial signal interferences to each other [45]. In fact, the three ISPs’

radio frequency bands are fairly close to each other (more specifi-

cally, with the median frequency being ISP-B’s > ISP-C’s > ISP-A’s)

and even occasionally overlap one another, thus leading to poten-

tially significant adjacent-channel interference. More importantly,

dense BS deployment could make LTE mobility management highly

complicated and challenging [12, 38], causing frequent cellular fail-

ures tagged with EMM_ACCESS_BARRED, INVALID_EMM_STATE,

etc. [3]. This is especially the case when multiple ISPs adopt similar

deployment strategies without coordinations.

4 ENHANCEMENTS

Our multifold findings on cellular data connections failures in §3

drive us to rethink the current techniques widely employed by cell

phones, mobile OSes, and ISPs with respect to their influence on the

reliability of cellular connections. Accordingly, in this section we

provide insightful guidance for addressing various cellular failures at

scale (§4.1), as well as practical enhancements that have registered

large-scale deployment and yielded real-world impact (§4.2).

4.1 Guidelines in Principle

In §3 we have revealed a variety of technical and business issues that

could lead to or aggravate cellular failures. As elucidated in §3.2,

cellular failures on 5G phones are more prevalent and frequent than

the other phones (without 5G capability), most probably owing to the

high network workload and immature production state of today’s 5G

communication modules. Thus, we suggest that mobile phone ven-

dors be cautious when incorporating 5G modules to their products;

more specifically, we encourage the vendors to comprehensively

validate the new 5G modules’ coordination and compatibility with

existing hardware/software, so as to produce more reliable phone

models in terms of cellular communication.

Also in §3.2, we note that Android 10 phones are more subject to

cellular failures than Android 9 phones, due to the typically worse

stability and robustness of newly released OSes, in particular the

blindly prioritized usage of 5G connection over 4G/3G/2G connec-

tions. We have reported the discovered problems of Android 10

to its official development team, but have not got useful feedback.

Hence, we propose that for the vendors, sufficient testing for new

characteristics (e.g., the 4G/5G switching policy) should be carried

out before pushing a new OS to certain phone models.

0 1 2 3 4 5

0

1

2

3

4

5

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-0.21 -0.42 -0.7 -0.84 -0.91-0.86

0.49 0.28 0 -0.14 -0.21 -0.09

0.56 0.35 0.07 -0.07 -0.14 -0.09

0.57 0.36 0.08 -0.06 -0.13 -0.08

0.62 0.41 0.13 -0.01 -0.08 -0.03

0.5 0.29 0.01 -0.13 -0.2 -0.15

(a) RAT transition from 2G level-𝑖 to 3G level-𝑗 .

0 1 2 3 4 5

0

1

2

3

4

5

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-0.26 -0.79 -0.79 -0.86 -0.86 -0.72

0.44 -0.09 -0.09 -0.16 -0.16 -0.02

0.51 -0.02 -0.02 -0.09 -0.09 0.05

0.52 -0.01 -0.01 -0.08 -0.08 0.06

0.57 0.04 0.04 -0.03 -0.03 0.11

0.45 -0.08 -0.08 -0.15 -0.15 -0.01

(b) RAT transition from 2G level-𝑖 to 4G level-𝑗 .

0 1 2 3 4 5

0

1

2

3

4

5

0.2

0

-0.2

-0.4

-0.6

-0.8

-0.49 -0.85 -0.7 -0.77 -0.7 -0.66

0.21 -0.14 0 -0.07 0 0.04

0.28 -0.07 0.07 0 0.07 0.11

0.29 -0.06 0.08 0.01 0.08 0.12

0.34 -0.01 0.13 0.06 0.13 0.17

0.22 -0.13 0.01 -0.06 0.01 0.05

(c) RAT transition from 2G level-𝑖 to 5G level-𝑗 .

0 1 2 3 4 5

0

1

2

3

4

5

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.05 -0.58 -0.58 -0.65 -0.65 -0.51

-0.37 -0.37 -0.44 -0.44 -0.30.16

0.44 -0.09 -0.09 -0.16 -0.16 -0.02

0.58 0.05 0.05 -0.02 -0.02 0.12

0.65 0.12 0.12 0.05 0.05 0.19

0.6 0.07 0.07 0 0 0.14

(d) RAT transition from 3G level-𝑖 to 4G level-𝑗 .

0 1 2 3 4 5

0

1

2

3

4

5

0.4

0.2

0

-0.2

-0.4

-0.6

-0.28 -0.63 -0.49 -0.56 -0.49 -0.45

-0.07 -0.42 -0.28 -0.35 -0.28 -0.24

0.21 -0.14 0 -0.07 0 0.04

0.35 0 0.14 0.07 0.14 0.18

0.42 0.07 0.21 0.14 0.21 0.25

0.37 0.02 0.16 0.09 0.16 0.2

(e) RAT transition from 3G level-𝑖 to 5G level-𝑗 .

0 1 2 4 4 5

0

1

2

3

4

5

0.2

0

-0.2

-0.4

-0.23 -0.58 -0.44 -0.51 -0.44 -0.4

0.3 -0.05 0.1 0.02 0.1 0.13

0.3 -0.05 0.1 0.02 0.1 0.13

0.37 0.02 0.16 0.1 0.16 0.2

0.37 0.02 0.16 0.1 0.16 0.2

0.23 -0.12 0.02 -0.05 0.02 0.06

(f) RAT transition from 4G level-𝑖 to 5G level-𝑗 .

Figure 17: Increase of normalized prevalence of cellular failures for different RAT transitions (e.g., from 4G level-𝑖 to 5G level- 𝑗).

Deeper color represents larger increase. For example, the dark cell in Figure 17f (𝑖 = 4, 𝑗 = 0) means that when a cell phone switches

from 4G level-4 signal access to 5G level-0 signal access, the normalized prevalence of cellular failures will sharply increase by 0.37,

implying that this RAT transition will significantly increase the likelihood of cellular failures.

For mobile ISPs, we unravel in §3.3 that due to less workload

and radio resource contention from user devices, 3G BSes are less

subject to cellular failures than 2G and 4G BSes. Thereby, ISPs may

consider making better use of these relatively “idle” infrastructure

components to alleviate the burdens on busy 2G/4G BSes. Further,

our in-depth investigation into the correlation between signal level

(or RSS) and cellular failures uncovers that due to ISPs’ dense BS

deployment around public transport hubs, cellular failures can be

rather severe despite very high signal levels, for reasons of intensive

signal interferences and highly complex mobility management re-

quirements. Therefore, we advise ISPs to carefully control their BS

deployment density in such areas. Finally, we advocate the recent

campaign of cross-ISP infrastructure sharing [11], which aims to

coordinate the BS deployment among different ISPs for more effi-

cient utilization of radio infrastructure resources and thus can help

mitigate cellular failures.

4.2 Real-World Practices

Apart from the above heuristic guidelines for the broad commu-

nity, by collaborating with Xiaomi, we have practically explored

optimization opportunities with respect to the aggressive 5G us-

age policy (cf. §3.2) during RAT transition and the conservative

Data_Stall recovery mechanism (cf. §3.2) in vanilla Android. Based

on critical insights obtained from our measurement study, below

we first devise a stability-compatible RAT transition mechanism

to make cellular connections more reliable, and then leverage the

time-inhomogeneous Markov process (TIMP) model to accelerate

the Data_Stall recovery. Both efforts have been put into practice and

produced promising results.

Stability-Compatible RAT Transition. As introduced in §3.2,

we observe that Android 10 adopts a quite aggressive strategy to

prioritize the usage of 5G connections during RAT transition, which

pays little attention to the cellular network status (e.g., signal level)

and thus leads to a large number of cellular failures. In fact, as shown

in Figure 16, the normalized prevalence (or simply likelihood) of

cellular failures varies significantly across different signal levels

under 4G/5G networks. More specifically, as depicted in Figure 17f,

four cases of RAT transitions (including 4G level-1 → 5G level-0,

4G level-2 → 5G level-0, 4G level-3 → 5G level-0, and 4G level-4

→ 5G level-0) drastically increase the likelihood of cellular failures,

and thus should be avoided if no side effect is incurred.

Here the side effect mainly lies in the potential data rate increase

if we allow such 4G→5G RAT transitions. Nonetheless, given that

in all the four cases the 5G access is coupled with level-0 signal

strength (and thus can hardly provide a high data rate), the “potential”

increase in data rate brought by these RAT transitions can scarcely

happen in principle. To check this practically, we conduct small-scale

benchmark experiments using four different 5G phones as listed in

Table 1, finding that these RAT transitions almost always (>95%)

decrease the data rate. Consequently, we conclude that in general

the four undesirable cases of RAT transitions can be safely avoided

to preserve the stability of cellular connections.

In addition, to achieve more smooth RAT transition, we inte-

grate the novel 4G/5G dual connectivity mechanism advocated by

3GPP [47] on compatible devices (including all the four 5G models

in Table 1). It allows a device to establish and maintain control-plane

cellular connections with a 4G BS and a 5G BS simultaneously,

where the master connection is also responsible for data-plane packet

transfer while the slave connection is not. Then, when a RAT transi-

tion is decided, the transition process can be effectively shortened

and thus would incur less disturbance to user experience.

Apart from the major case of 4G→5G transition, Figure 17 also

depicts the increase of normalized prevalence of cellular failures for

the other RAT transition cases. Similar as in the 4G→5G transition,

for all the RATs we can observe “undesirable” transition cases where

the prevalence of cellular failures is largely increased. A common

pattern of such cases is that failures tend to occur when there is

level-0 RSS after transition. This can be intuitively explained by

the highest prevalence of cellular failures with regard to level-0

RSS, as shown in Figure 15. Therefore, we suggest OS developers

to carefully avoid these cases so as to improve cellular reliability.

Meanwhile, avoiding these problematic cases should not negatively

impact the devices’ data rates, as the RSS is extremely weak after

transition and thus can hardly provide better cellular performance.

TIMP-based Flexible Data_Stall Recovery. Recall in §3.2 that

to address Data_Stall failures, Android has implemented a three-

stage progressive recovery mechanism that attempts to repair the

user device’s cellular connection with three operations: (1) cleaning

up current connections, (2) re-registering into the network, and (3)

restarting the device’s radio component. Before entering each stage

(including the first stage), Android would passively monitor the exis-

tence of Data_Stall for one minute (which we call the “probation”) in

case that the previous (more lightweight) operation has already fixed

the problem. Although the three recovery operations can be quite

effective when executed, as discussed in §3.2, in practice we no-

tice that the fixed-time (i.e., one-minute) recovery trigger is usually

lagging and not user-friendly.

To figure out an appropriate trigger, our key insight is that the

conceptual three-stage progressive recovery in Android is essentially

a state transition process. As depicted in Figure 18, the process

includes five states: 𝑆0, 𝑆1, 𝑆2, 𝑆3, and 𝑆𝑒 = 𝑆4. Here 𝑆0 denotes

the start point (when Data_Stall is detected by Android), 𝑆1, 𝑆2, 𝑆3
respectively represent starting the execution of the aforementioned

three recovery operations, and 𝑆𝑒 marks the end of the process.

According to our measurement, the state transition from 𝑆𝑖 to the

next state is basically only dependent on 𝑆𝑖 and other stochastic

events, and thus can be modeled by a Markov process [49].

S0S0 S1S1 S2S2 S3S3

SeSe

P0→e(t)

P1→e(t) P2→e(t)

P3→e(t)

P0→1 P1→2 P2→3

Figure 18: The time-inhomogeneous Markov process (TIMP)

that models the Data_Stall recovery process in Android, where

the transition probabilities among the five states are also im-

pacted by the elapsed time (𝑡).

With the above understanding, we can then formalize the expected

overall recovery time (denoted as 𝑇recovery) so as to calculate more

suitable triggers that are able to minimize 𝑇recovery. However, the

traditional Markov process can only model a stationary process

where the state transition probability is not affected by the elapsed

time 𝑡 , and thus is not applicable to our scenario where the state

transition probability also depends on 𝑡 , as indicated in Figure 10

(the user device can automatically fix the problem as time goes by).

Thus, using our dataset we build a time-inhomogeneous Markov

process [49] (TIMP) to model the complex state transitions during

the Data_Stall recovery process in a time-sensitive manner, by in-

corporating recovery probabilities within different time windows.

Specifically, after entering 𝑆𝑖 , the user device either automatically

recovers from Data_Stall within the time window [𝑆𝑖 , 𝑆𝑖+1] (referred

to as Case-1), or enters the next state after 𝑃𝑟𝑜𝑖 seconds (referred

to as Case-2), where 𝑃𝑟𝑜𝑖 denotes the probation time for leaving

𝑆𝑖 . For any elapsed time 𝑡 within the time window, we denote the

probability of the device’s recovering from Data_Stall as P𝑖→𝑒 (𝑡).

Thereby, the probability of its not recovering (thus entering 𝑆𝑖+1) is

P𝑖→𝑖+1 = 1−P𝑖→𝑒 (𝜎𝑃𝑟𝑜𝑖), where 𝜎𝑃𝑟𝑜𝑖 =
∑𝑖
𝑘=0

𝑃𝑟𝑜𝑘 is the elapsed

time from 𝑆0 to 𝑆𝑖+1.

At this point, we can formalize the expected recovery time after

entering state 𝑆𝑖 (denoted as 𝑇𝑖) as the sum of three parts:

𝑇𝑖 =

∫ 𝜎𝑃𝑟𝑜𝑖

𝜎𝑃𝑟𝑜𝑖−1

P𝑖→𝑒 (𝑡)𝑑𝑡 + P𝑖→𝑖+1 ·𝑇𝑖+1 +𝑂𝑖 . (1)

The first part is the integral of P𝑖→𝑒 (𝑡) over the time window [𝑆𝑖 , 𝑆𝑖+1],

i.e.,
∫ 𝜎𝑃𝑟𝑜𝑖
𝜎𝑃𝑟𝑜𝑖−1

P𝑖→𝑒 (𝑡)𝑑𝑡 , representing that Case-1 occurs. The second

part is the probability of the device’s entering the next state (P𝑖→𝑖+1)

multiplying the expected recovery time (𝑇𝑖+1) after entering the next

state, i.e., P𝑖→𝑖+1 ·𝑇𝑖+1, representing that Case-2 occurs. Finally, the

third part is the time overhead for executing each recovery opera-

tion, denoted as 𝑂1, 𝑂2, and 𝑂3, where 𝑂1 < 𝑂2 < 𝑂3 given the

progressive nature of the three recovery operations.

In detail, we can obtain the approximate values of P𝑖→𝑒 and 𝑂𝑖

using our duration measurement data of Data_Stall failures. Spe-

cially, when 𝑖 = 0, 𝑂𝑖 = 0 since no recovery operation is executed

at this stage; when 𝑖 = 3, 𝑇3 =

∫ 𝑡𝑚
𝜎𝑃𝑟𝑜2

P3→𝑒 (𝑡)𝑑𝑡 + 𝑂3, where 𝑡𝑚

is the maximum duration of Data_Stall failures. Thus, we know

that the expected overall recovery time 𝑇recovery = 𝑇0 is essentially

determined by the three probations 𝑃𝑟𝑜0, 𝑃𝑟𝑜1, and 𝑃𝑟𝑜2.

Vanilla Android Stability-Compatible
RAT Transition Policy

0

0.05

0.1

0.15

0.2

0.25

Pr
ev

al
en

ce

Data_Setup_Error
Out_of_Service
Data_Stall
All Failures

Figure 19: Prevalence of cellular failures

with the RAT transition policy of vanilla

Android and our Stability-Compatible

RAT Transition.

Vanilla Android Stability-Compatible
RAT Transition Policy

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Data_Setup_Error
Out_of_Service
Data_Stall
All Failures

Figure 20: Frequency of cellular failures

with the RAT transition policy of vanilla

Android and our Stability-Compatible

RAT Transition.

0 40 80 120 160 200
Failure Duration (s)

0

0.2

0.4

0.6

0.8

1

C
D

F Min=0
Median=6
Mean=186
Max=76,101

Min=0
Median=2
Mean=119
Max=55,060

TIMP-based Recovery
Vanilla Android

Figure 21: Duration of cellular failures

with the Data_Stall recovery mechanism

in vanilla Android and our TIMP-based

Flexible Recovery.

Our optimization objective is then to minimize 𝑇recovery for dif-

ferent possible values of 𝑃𝑟𝑜0, 𝑃𝑟𝑜1, and 𝑃𝑟𝑜2. To this end, we use

the annealing algorithm [42] to search for the global minimum,

thus knowing that 𝑇recovery is minimized when 𝑃𝑟𝑜0 = 21 seconds,

𝑃𝑟𝑜1 = 6 seconds, and 𝑃𝑟𝑜2 = 16 seconds. Consequently, the desired

𝑇recovery = 27.8 seconds, which is smaller than a normal user’s tol-

erance of Data_Stall duration (∼30 seconds, cf. §3.2). In contrast,

using the default probations (𝑃𝑟𝑜 ′
0
= 𝑃𝑟𝑜 ′

1
= 𝑃𝑟𝑜 ′

2
= 60 seconds) in

the original recovery mechanism of Android, the expected recov-

ery time is 38 seconds, indicating that our designed trigger clearly

outperforms the original one in Android.

4.3 Deployment and Evaluation

In order to validate the real-world effect of our design, we patched

the above two-fold mechanisms to Android-MOD and invited the

original 70M opt-in users in late Oct. 2020 to participate in our

evaluation of the optimization mechanisms (§4.2). This time, 40%

of the 70M users opted-in and upgraded to our patched system. The

evaluation has been conducted for two months (Nov.–Dec. 2020).

As shown in Figure 19 and Figure 20, thanks to our Stability-

Compatible RAT Transition mechanism, cellular failures occur 10%

less prevalently and 40.3% less frequently on the participant 5G

phones, without sacrificing the data rate (as explained in §4.2). In de-

tail, for Data_Setup_Error, Data_Stall, and Out_of_Service failures,

the decrease of prevalence (frequency) is -7% (25.72%), 13.45%

(42.4%), and 5% (50.26%), respectively. Here the only exception

lies in the prevalence of Data_Setup_Error failures, which slightly

increases after our optimization is applied; however, given the oc-

currence frequency is significantly reduced by 25.72% by our opti-

mization, we feel that the exception is most probably due to normal

statistical fluctuation during the evaluation—after all, the measure-

ment study and the evaluation study are conducted in two disjoint

time periods.

Further, as shown in Figure 21, after our designed TIMP-based

Flexible Data_Stall Recovery mechanism is put into practice, 38%

reduction on the duration of Data_Stall failures is achieved on av-

erage, corresponding to 36% reduction on the total duration of all

types of failures. More notably, the median duration of all failures is

remarkably reduced by 67% (from 6 seconds to 2 seconds). Most im-

portantly, our TIMP-based recover mechanism works in a principled

and flexible manner, so it will automatically adapt to the possible

pattern changes of Android system behaviors and cellular reliability

in the future.

At the same time, to evaluate the overhead of our patched Android-

MOD, we perform small-scale benchmark experiments using 34

different phones as described in Table 1. The results demonstrate

that our optimizations incur little overhead to a low-end Android

phone: <3% CPU utilization, ∼60 KB of memory usage, and <100

KB of storage space; the network usage is <100 KB per month.

Even in the worst case where the monthly number of failures reaches

24,000+ on a single phone (as shown in Figure 3), the incurred

CPU, memory, and storage overheads are still acceptable: <9% CPU

utilization, ∼3 MB of memory usage, and <20 MB of storage space;

the network usage is ∼20 MB per month.

5 RELATED WORK

With the fast and wide penetration of wireless cellular networks

across the globe, the quality of cellular service is becoming more

and more important to a person’s everyday life, an organization’s

collaborative work, and even a nation’s industrial information ecosys-

tem. In the past ten years or so, there has been a plethora of work

studying the characteristics of cellular networks, from the perspec-

tives of mobile ISPs/base stations [17, 19, 56, 57], user devices [12,

21, 26, 27, 34, 37, 39, 48], user-to-device interactions [15, 32, 51],

and device-to-device communications [33, 44]. Researchers have

also developed measurement tools and platforms for conducting

cellular network measurements [23, 30, 41].

Most of the above studies investigate the common aspects (per-

formance and availability) of cellular networks, such as bandwidth,

delay, BS density, and signal coverage. Till now, only a few studies

focus on cellular reliability, which is not only relatively unfamiliar

to the community but also more complicated and difficult to mea-

sure and analyze. Hui et al. [20] at T-Mobile leverage a cross-layer

measurement strategy to understand the Data_Stall failures and their

impact on mobile QoE, by analyzing the data collected at both sides

of BSes and user devices. They uncover specific root causes for the

problem, including link corruptions and packet drops during radio

state transitions, as well as incorrect implementation of the radio

network controller’s scheduling algorithm.

Prior work also suggests that BS and RAT handoffs can be rather

difficult to handle under complex environments, leading to cellular

service unreliability [28, 31] and unavailability [12, 43] issues. Our

study distinguishes itself from the above in its extremely large user

scale and ISP/BS coverage, and particularly the comprehensive con-

siderations of various cellular failures in the wild. Moreover, when

seeking the reasons of cellular failures, our work is featured by the

joint analysis of phone hardware configurations, OS internals, BS

characteristics, and BS-to-phone interactions.

Measurement studies shed light on possible design and imple-

mentation optimizations. Cellular network optimizations have been

extensively discussed from multiple aspects like congestion con-

trol [50, 55, 58], energy efficiency [9, 10, 18], and security en-

hancements [13, 25], as well as under various scenarios like video

streaming [52, 53], web browsing [54], and cellular-WiFi inter-

action [35, 40]. In particular, researchers have proposed to lever-

age lower-layer cellular information to boost the upper-layer user-

perceived performance [52–55]. Contrasting the above efforts, we

identify and explore the unique optimization opportunities (in coordi-

nation with a major Android phone vendor) to enable more reliable

and faster recovery from several types of severe cellular failures.

We have also performed large-scale deployment of our proposed

solutions which yielded real-world impact.

6 DISCUSSION ON LIMITATIONS

In §2 we present Android-MOD, which incorporates dedicated low-

level system tracing and active network probing mechanisms, as well

as our domain knowledge to continuously and accurately capture

cellular failures at scale. With this monitoring infrastructure and its

deployment in the wild, we were able to obtain a large dataset that

offers us the unique opportunity of revealing multifold problems

with regard to both the cellular infrastructure and mobile operating

systems. Nevertheless, we have to note that our dataset and analyses

still bear several limitations, owing to realistic constraints stemming

from end-user devices’ limited cellular context information.

In Android-MOD, upon Data_Stall occurrences, we adopt an

active probing-based mechanism to accurately measure their dura-

tions and rule out possible false positives. This, however, inevitably

interferes with the cellular and network environments, and thus

could lead to potential errors in the measurement results. Although

our evaluation (at the end of §2.2) has shown that this mechanism

is unlikely to incur measurement errors given that its process is

well time-bounded and lightweight, alternative passive monitoring

mechanisms are still worth exploring. For example, Hui et al. [20]

propose cross-device/network measurement that monitors network

packets for uncovering the root causes of cellular problems. Simi-

larly, Wang et al. [48] employ passive packet capturing in high-speed

railways’ on-board LTE gateways to analyze the flow characteristics

of LTE networks. In this work, we do not adopt similar method-

ologies because capturing network flows is rather intrusive for user

devices, but would like to leave other possible passive methodologies

that are non-intrusive as important future work.

Limited by the cellular context information Android-MOD can

collect from user devices, some of our analyses in §3 may lack direct

evidence and thus may deviate from the actual cause(s) which relate

to other impact factors beyond our current reach. For such cases, we

have provided best-effort validations by carefully considering differ-

ent aspects of the dataset. To further demystify the relevant problems

and complement this work, in the future we wish to collaborate with

mobile ISPs to carry out more comprehensive researches.

In addition, our study currently does not involve Android 11 as it

was released after our measurement period. Nevertheless, by closely

examining the concerned source code in Android 11, we find that

the majority of cellular reliability problems we have revealed in this

work remain in Android 11, especially the aggressive RAT transition

policy and the lagging Data_Stall recovery mechanism. Therefore,

our findings and proposed enhancements should also be beneficial

to even the latest devices running Android 11.

7 CONCLUSION

This paper presents our efforts towards understanding and combat-

ing the reliability issues in cellular networks. Despite prior focuses

on cellular performance and availability, the fundamental reliability

situations are still not clearly understood at scale. We close this

critical knowledge gap by conducting a large-scale, crowdsourcing-

based measurement study with the help from 70 million opt-in users.

Collaborating with a major Android phone vendor, we develop and

deploy a continuous monitoring platform to collect fine-grained,

in-situ system traces, leveraging which we reveal the nationwide

prevalence and frequency of cellular failures for the first time. More

in depth, we uncover severe reliability problems in the cellular con-

nection management of Android, as well as the BS utilization and

deployment strategies of mobile ISPs. Driven by the study insights,

we provide useful guidelines to help tackle a variety of cellular fail-

ures. Most importantly, some of our solutions have been adopted by

28 million users, generating prominent realistic impacts.

ACKNOWLEDGMENTS

We appreciate Wenli Shi, Junjie Hou, Rongyan Sun and Daliang

Sun for their help in data collection and analysis. We sincerely thank

the anonymous reviewers for their insightful comments, and our

shepherd Lili Qiu for guiding us through the revision process. This

work is supported in part by the National Key R&D Program of

China under grant 2018YFB1004700, as well as the National Nat-

ural Science Foundation of China (NSFC) under grants 61822205,

61632020, 61632013 and 61902211.

REFERENCES
[1] Android.org. 2021. Android 10 Highlights. https://developer.android.com/about/

versions/10/highlights.
[2] Android.org. 2021. Data Connection Management in Android.

https://android.googlesource.com/platform/frameworks/opt/telephony/+/master/
src/java/com/android/internal/telephony/dataconnection/DataConnection.java.

[3] Android.org. 2021. Data Fail Cause in Android. https://android.googlesource.c
om/platform/frameworks/base/+/master/telephony/java/android/telephony/Data
FailCause.java.

[4] Android.org. 2021. Data Setup Error in Android. https://android.googlesource.c
om/platform/frameworks/opt/telephony/+/refs/heads/master/src/java/com/androi
d/internal/telephony/dataconnection/DcTracker.java.

[5] Android.org. 2021. Data Stall Report in Android. https://developer.android.com/
reference/android/net/ConnectivityDiagnosticsManager.DataStallReport.

[6] Android.org. 2021. Enhance Your Apps with 5G. https://developer.android.com/
training/connectivity/5g/enhance-with-5g.

[7] Android.org. 2021. SMS Manager in Android. https://developer.android.com/re
ference/android/telephony/SmsManager.

[8] Android.org. 2021. State Out of Service in Android. https://developer.android.co
m/reference/android/telephony/ServiceState.

https://developer.android.com/about/versions/10/highlights
https://developer.android.com/about/versions/10/highlights
https://android.googlesource.com/platform/frameworks/opt/telephony/+/master/src/java/com/android/internal/telephony/dataconnection/DataConnection.java
https://android.googlesource.com/platform/frameworks/opt/telephony/+/master/src/java/com/android/internal/telephony/dataconnection/DataConnection.java
https://android.googlesource.com/platform/frameworks/opt/telephony/+/master/src/java/com/android/internal/telephony/dataconnection/DataConnection.java
https://android.googlesource.com/platform/frameworks/base/+/master/telephony/java/android/telephony/DataFailCause.java
https://android.googlesource.com/platform/frameworks/base/+/master/telephony/java/android/telephony/DataFailCause.java
https://android.googlesource.com/platform/frameworks/base/+/master/telephony/java/android/telephony/DataFailCause.java
https://android.googlesource.com/platform/frameworks/opt/telephony/+/refs/heads/master/src/java/com/android/internal/telephony/dataconnection/DcTracker.java
https://android.googlesource.com/platform/frameworks/opt/telephony/+/refs/heads/master/src/java/com/android/internal/telephony/dataconnection/DcTracker.java
https://android.googlesource.com/platform/frameworks/opt/telephony/+/refs/heads/master/src/java/com/android/internal/telephony/dataconnection/DcTracker.java
https://developer.android.com/reference/android/net/ConnectivityDiagnosticsManager.DataStallReport
https://developer.android.com/reference/android/net/ConnectivityDiagnosticsManager.DataStallReport
https://developer.android.com/training/connectivity/5g/enhance-with-5g
https://developer.android.com/training/connectivity/5g/enhance-with-5g
https://developer.android.com/reference/android/telephony/SmsManager
https://developer.android.com/reference/android/telephony/SmsManager
https://developer.android.com/reference/android/telephony/ServiceState
https://developer.android.com/reference/android/telephony/ServiceState

[9] Pavan K Athivarapu, Ranjita Bhagwan, Saikat Guha, Vishnu Navda, Ramachan-
dran Ramjee, Dushyant Arora, Venkat N Padmanabhan, and George Varghese.
2012. Radiojockey: Mining Program Execution to Optimize Cellular Radio Usage.
In Proc. of ACM MobiCom. 101–112.

[10] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani.
2009. Energy Consumption in Mobile Phones: A Measurement Study and Impli-
cations for Network Applications. In Proc. of ACM SIGCOMM. 280–293.

[11] Lorela Cano, Antonio Capone, Giuliana Carello, Matteo Cesana, and Mauro
Passacantando. 2017. On Optimal Infrastructure Sharing Strategies in Mobile
Radio Networks. IEEE Transactions on Wireless Communications 16, 5 (2017),
3003–3016.

[12] Haotian Deng, Chunyi Peng, Ans Fida, Jiayi Meng, and Y Charlie Hu. 2018. Mo-
bility Support in Cellular Networks: A Measurement Study on Its Configurations
and Implications. In Proc. of ACM IMC. 147–160.

[13] Haotian Deng, Weicheng Wang, and Chunyi Peng. 2018. Ceive: Combating Caller
ID Spoofing on 4G Mobile Phones via Callee-only Inference and Verification. In
Proc. of ACM MobiCom. 369–384.

[14] Clare Duffy. 2020. The big differences between 4G and 5G. https://www.cnn.co
m/2020/01/17/tech/5g-technical-explainer/index.html.

[15] Aaron Gember, Aditya Akella, Jeffrey Pang, Alexander Varshavsky, and Ramon
Caceres. 2012. Obtaining In-context Measurements of Cellular Network Perfor-
mance. In Proc. of ACM IMC. 287–300.

[16] Jann Horn. 2021. Mitigations Are Attack Surface, Too. https://googleprojectzer
o.blogspot.com/2020/02/mitigations-are-attack-surface-too.html.

[17] Zhenxian Hu, Yi-Chao Chen, Lili Qiu, Guangtao Xue, Hongzi Zhu, Nicholas
Zhang, Cheng He, Lujia Pan, and Caifeng He. 2015. An In-depth Analysis of 3G
Traffic and Performance. In Proc. of ACM SIGCOMM Workshop (AllThingsCellu-

lar). 1–6.
[18] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen,

and Oliver Spatscheck. 2012. A Close Examination of Performance and Power
Characteristics of 4G LTE Networks. In Proc. of ACM MobiSys. 225–238.

[19] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. 2013. An In-depth Study of LTE:
Effect of Network Protocol and Application Behavior on Performance. ACM

SIGCOMM Computer Communication Review 43, 4 (2013), 363–374.
[20] Jie Hui and Kevin Lau. 2013. T-Mobile QoE Lab: Making Mobile Browsing

Faster and Open Research Problems. In Proc. of ACM MobiCom. 239–242.
[21] Keon Jang, Mongnam Han, Soohyun Cho, Hyung-Keun Ryu, Jaehwa Lee,

Yeongseok Lee, and Sue B Moon. 2009. 3G and 3.5 G Wireless Network Per-
formance Measured from Moving Cars and High-Speed Trains. In Proc. of ACM

MICNET. 19–24.
[22] Anant Kumar, Jon Postel, Cliff Neuman, Peter Danzig, and Steve Miller. 1993.

Common DNS Implementation Errors and Suggested Fixes. Technical Report.
Oct. 1993, RFC 1536.

[23] Swarun Kumar, Ezzeldin Hamed, Dina Katabi, and Li Erran Li. 2014. LTE Radio
Analytics Made Easy and Accessible. ACM SIGCOMM Computer Communication

Review 44, 4 (2014), 211–222.
[24] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and Hung-Sheng Lee.

2019. Furion: Engineering High-quality Immersive Virtual Reality on Today’s
Mobile Devices. IEEE Transactions on Mobile Computing (2019).

[25] Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwen Yuan, Yuanjie Li, Songwu Lu,
and Xinbing Wang. 2015. Insecurity of Voice Solution VoLTE in LTE Mobile
Networks. In Proc. of ACM SIGSAC. 316–327.

[26] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan Wang, Xiangxiang Wang,
Meng Shen, and Rashid Mijumbi. 2018. A Measurement Study on Multi-Path TCP
with Multiple Cellular Carriers on High Speed Rails. In Proc. of ACM SIGCOMM.
161–175.

[27] Li Li, Ke Xu, Dan Wang, Chunyi Peng, Qingyang Xiao, and Rashid Mijumbi. 2015.
A Measurement Study on TCP Behaviors in HSPA+ Networks on High-Speed
Rails. In Proc. of IEEE INFOCOM. 2731–2739.

[28] Yuanjie Li, Haotian Deng, Jiayao Li, Chunyi Peng, and Songwu Lu. 2016. Insta-
bility in Distributed Mobility Management: Revisiting Configuration Management
in 3G/4G Mobile Networks. In Proc. of ACM SIGMETRICS. 261–272.

[29] Yuanjie Li, Qianru Li, Zhehui Zhang, Ghufran Baig, Lili Qiu, and Songwu Lu.
2020. Beyond 5G: Reliable Extreme Mobility Management. In Proc. of ACM

SIGCOMM. 344–358.
[30] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and Tao Wang.

2016. Mobileinsight: Extracting and Analyzing Cellular Network Information on
Smartphones. In Proc. of ACM MobiCom. 202–215.

[31] Yuanjie Li, Jiaqi Xu, Chunyi Peng, and Songwu Lu. 2016. A First Look at Unstable
Mobility Management in Cellular Networks. In Proc. of ACM HotMobile. 15–20.

[32] Yang Li, Jianwei Zheng, Zhenhua Li, Yunhao Liu, Feng Qian, Sen Bai, Yao
Liu, and Xianlong Xin. 2020. Understanding the Ecosystem and Addressing
the Fundamental Concerns of Commercial MVNO. IEEE/ACM Transactions on

Networking 28, 3 (2020), 1364–1377.
[33] Zhenhua Li, Weiwei Wang, Christo Wilson, Jian Chen, Chen Qian, Taeho Jung,

Lan Zhang, Kebin Liu, Xiangyang Li, and Yunhao Liu. 2017. FBS-Radar: Uncov-
ering Fake Base Stations at Scale in the Wild. In Proc. of ISOC NDSS. 1–15.

[34] Zhenhua Li, Weiwei Wang, Tianyin Xu, Xin Zhong, Xiang-Yang Li, Yunhao Liu,
Christo Wilson, and Ben Y Zhao. 2016. Exploring Cross-Application Cellular
Traffic Optimization with Baidu TrafficGuard. In Proc. of USENIX NSDI. 61–76.

[35] Yeon-sup Lim, Erich M Nahum, Don Towsley, and Richard J Gibbens. 2017. ECF:
An MPTCP Path Scheduler to Manage Heterogeneous Paths. In Proc. of ACM

CoNEXT. 147–159.
[36] Craig J. Mathias. 2008. Opinion: How not to Build more Reliable Cellular

Networks. https://www.computerworld.com/article/2537774/opinion--how-not
-to-build-more-reliable-cellular-networks.html.

[37] Ruben Merz, Daniel Wenger, Damiano Scanferla, and Stefan Mauron. 2014.
Performance of LTE in A High-Velocity Environment: A Measurement Study. In
Proc. of ACM SIGCOMM Workshop (AllThingsCellular). 47–52.

[38] Martin Klaus Müller, Martin Taranetz, and Markus Rupp. 2015. Providing Cur-
rent and Future Cellular Services to High Speed Trains. IEEE Communications

Magazine 53, 10 (2015), 96–101.
[39] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng

Qian, and Zhi-Li Zhang. 2020. A First Look at Commercial 5G Performance on
Smartphones. In Proc. of WWW. 894–905.

[40] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z Morley Mao, and Subhabrata Sen.
2016. An In-depth Understanding of Multipath TCP on Mobile Devices: Measure-
ment and System Design. In Proc. of ACM MobiCom. 189–201.

[41] Ashkan Nikravesh, Hongyi Yao, Shichang Xu, David Choffnes, and Z Morley
Mao. 2015. Mobilyzer: An Open Platform for Controllable Mobile Network
Measurements. In Proc. of ACM MobiSys. 389–404.

[42] Ralph HJM Otten and Lukas PPP van Ginneken. 2012. The Annealing Algorithm.
Vol. 72. Springer Science & Business Media.

[43] Chunyi Peng and Yuanjie Li. 2016. Demystify Undesired Handoff in Cellular
Networks. In Proc. of IEEE ICCCN. 1–9.

[44] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, and Jia Wang. 2013.
Large-scale Measurement and Characterization of Cellular Machine-to-Machine
Traffic. IEEE/ACM Transactions on Networking 21, 6 (2013), 1960–1973.

[45] Jie Sheng, Ziwen Tang, Cheng Wu, Bo Ai, and Yiming Wang. 2020. Game
Theory-Based Multi-Objective Optimization Interference Alignment Algorithm
for HSR 5G Heterogeneous Ultra-Dense Network. IEEE Transactions on Vehicu-

lar Technology 69, 11 (2020), 13371–13382.
[46] Pyda Srisuresh, Bryan Ford, Senthil Sivakumar, Saikat Guha, et al. 2009. NAT

Behavioral Requirements for ICMP. Technical Report. Apr. 2009, RFC 5508.
[47] 3GPP TS 37.340 v15.0.0. 2018. 3rd Generation Partnership Project; NR; Tech-

nical Specification Group Radio Access Network; Multi-connectivity; Overall

description; Stage-2 (Release 15). Vol. 15. 3GPP.
[48] Jing Wang, Yufan Zheng, Yunzhe Ni, Chenren Xu, Feng Qian, Wangyang Li,

Wantong Jiang, Yihua Cheng, Zhuo Cheng, Yuanjie Li, et al. 2019. An Active-
Passive Measurement Study of TCP Performance over LTE on High-Speed Rails.
In Proc. of ACM MobiCom. 1–16.

[49] Gerhard Winkler. 2012. Image Analysis, Random Fields and Markov Chain

Monte Carlo Methods: A Mathematical Introduction. Vol. 27. Springer Science &
Business Media.

[50] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular Networks. In
Proc. of USENIX NSDI. 459–471.

[51] Ao Xiao, Yunhao Liu, Yang Li, Feng Qian, Zhenhua Li, Sen Bai, Yao Liu, Tianyin
Xu, and Xianlong Xin. 2019. An In-depth Study of Commercial MVNO: Mea-
surement and Optimization. In Proc. of ACM MobiSys. 457–468.

[52] Xiufeng Xie and Xinyu Zhang. 2017. Poi360: Panoramic Mobile Video Telephony
over LTE Cellular Networks. In Proc. of ACM CoNEXT. 336–349.

[53] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran Li. 2015. piStream:
Physical Layer Informed Adaptive Video Streaming over LTE. In Proc. of ACM

MobiCom. 413–425.
[54] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile Web

Loading Using Cellular Link Information. In Proc. of ACM MobiSys. 427–439.
[55] Yaxiong Xie, Fan Yi, and Kyle Jamieson. 2020. PBE-CC: Congestion Control

via Endpoint-Centric, Physical-Layer Bandwidth Measurements. In Proc. of ACM

SIGCOMM. 451–464.
[56] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,

Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding Operational 5G: A
First Measurement Study on Its Coverage, Performance and Energy Consumption.
In Proc. of ACM SIGCOMM. 479–494.

[57] Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong. 2014. An End-to-End
Measurement Study of Modern Cellular Data Networks. In Proc. of PAM. 34–45.

[58] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellular
Networks. In Proc. of ACM SIGCOMM. 509–522.

[59] Gongzheng Zhang, Tony QS Quek, Aiping Huang, and Hangguan Shan. 2015.
Delay and Reliability Tradeoffs in Heterogeneous Cellular Networks. IEEE

Transactions on Wireless Communications 15, 2 (2015), 1101–1113.
[60] George Kingsley Zipf. 1949. Human Behavior and the Principle of Least Effort:

An Introd. to Human Ecology. Addison-Wesley Press.

https://www.cnn.com/2020/01/17/tech/5g-technical-explainer/index.html
https://www.cnn.com/2020/01/17/tech/5g-technical-explainer/index.html
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://www.computerworld.com/article/2537774/opinion--how-not-to-build-more-reliable-cellular-networks.html
https://www.computerworld.com/article/2537774/opinion--how-not-to-build-more-reliable-cellular-networks.html

	Abstract
	1 Introduction
	2 Study Methodology
	2.1 Limitations of Vanilla Android
	2.2 Continuous Monitoring Infrastructure
	2.3 Large-Scale Deployment

	3 Measurement Results
	3.1 General Statistics
	3.2 Android Phone Landscape
	3.3 ISP and Base Station Landscape

	4 Enhancements
	4.1 Guidelines in Principle
	4.2 Real-World Practices
	4.3 Deployment and Evaluation

	5 Related Work
	6 Discussion on Limitations
	7 Conclusion
	References

