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Abstract—Android overlay enables one app to draw over other apps by creating an extra View layer atop the host View, which
nevertheless can be exploited by malicious apps (malware) to attack users. To combat this threat, prior countermeasures concentrate
on restricting the capabilities of overlays at the OS level while sacrificing overlays’ usability; recently, the overlay mechanism has been
substantially updated to prevent a variety of attacks, which however can still be evaded by considerable adversaries. To address these
shortcomings, a more pragmatic approach is to enable early detection of overlay-based malware during the app market review process,
so that all the capabilities of overlays can stay unchanged. For this purpose, in this paper we first conduct a large-scale comparative
study of overlay characteristics in benign and malicious apps, and then implement the OverlayChecker system to automatically detect
overlay-based malware for one of the world’s largest Android app stores. In particular, we have made systematic efforts in feature
engineering, UI exploration, emulation architecture, and run-time environment, thus maintaining high detection accuracy (97% precision
and 97% recall) and short per-app scan time (∼1.7 minutes) with only two commodity servers, under an intensive workload of ∼10K
newly submitted apps per day.
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1 INTRODUCTION

Overlay has been a user interface (UI) feature of Android, which
enables a mobile app to draw over other apps by creating an extra
View layer atop the host View, as illustrated in Figure 1. The
rationale behind this feature is to improve the users’ experience
when they are interacting with multiple apps at the same time.
Indeed, with the limited sizes of smartphone screens, squeezing
the UIs of multiple apps on a small screen would significantly
impair usability – although Multi-Window [1] (for displaying
multiple apps in a split-screen mode) has been supported since
Android 7.0, it is seldom used by smartphone users [2]. Overlays
have been widely adopted by mobile apps installed on hundreds of
millions of mobile devices, such as Facebook, Uber, Messenger,
Zoom, etc. We observe that as of Nov. 2020, 27.2% (136 out of
500) of the most popular apps in Google Play Store use overlays.

Unfortunately, the overlay feature is often exploited by ma-
licious apps (or says malware) to attack users [3], [4], [5], [6],
[7], [8], [9]. Since overlays can intercept user input that is in-
tended for the underlying host View, one common attack is to
capture sensitive user actions or data on the fly through decep-
tive overlays, as illustrated in Figures 1(c–e). To make matters
worse, a recent study [10] demonstrates that the UI feedback
loop can be completely compromised and controlled through
the “cloak and dagger” attack without the Android permission
SYSTEM_ALERT_WINDOW which is officially assigned to allow
an app to create overlays on top of all other apps.
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Fig. 1: Five common forms of overlays: (a) float, (b) cover, (c) hollow
out, (d) single point, (e) offscreen. The upper row plots the underlying
host View and the overlay lying on top of it, while the lower row
plots the user-perceived view in each case. Benign apps typically use
cases (a)(b), while malicious apps use all cases (a)–(e).

Given the severity and prevalence of overlay-based attacks, the
Android overlay mechanism has been substantially updated in the
release of Android 8.0 in Aug. 2017. Specifically, two-fold mea-
sures were taken to facilitate users’ comprehensive surveillance
on apps’ usage of overlays: (1) unifying the original six types
of overlays into a single one, and (2) changing the management
style of overlay-related permissions from static configuration at
installation time to dynamic approval at run time. Unfortunately,
despite these efforts, overlay-based attacks still persist due to real-
world challenges. On one hand, there still exist ∼40% of Android
devices that have not been upgraded to Android 8.0+, thus being
vulnerable to overlay-based attacks. For these devices, several
countermeasures have been proposed to restrict the capabilities
of overlays at the operating system (OS) level [11], [5], [12].
However, these solutions barely see any adoptions by Android due
to the concern of sacrificing overlay usability. On the other hand,
even for devices running Android 8.0+, malicious apps are still
able to launch overlay-based attacks in a two-stage manner [13]
– first inducing users to grant overlay-related permissions upon
app startup, and then successfully displaying malicious overlays
to them during the running process.

To address these issues, a more pragmatic approach is to
enable the early detection of overlay-based malware at the app
market level during the app review process (before the apps are

Authorized licensed use limited to: Tsinghua University. Downloaded on June 12,2022 at 13:29:21 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3079433, IEEE
Transactions on Mobile Computing

2

released to users), so that all the capabilities of overlays can be
retained and even devices that have not been upgraded to Android
8.0+ can be effectively protected. Unfortunately, little has been
known about the feasibility and effectiveness of this approach due
to the lack of systematic understandings, insights, and datasets
of malicious overlays in the wild. Still worse, few regulations and
usage references are available for overlay usage at present, making
it difficult to define benign and malicious overlays.

Understanding overlay-based malware. To overcome these, we
collaborate with one of the world’s largest Android app stores, i.e.,
Tencent App Market [14] or Market-T, to perform a large-scale
study of overlay behaviors in apps. Using both static and dynamic
analyses, we compare the overlay behavior between benign and
malicious apps to uncover critical characteristics of malicious
overlay in the ground-truth data provided by Market-T. Compared
with static features that can be directly extracted from APK files,
many important features (e.g., Type and Height) of overlays
are dynamically determined at app runtime. To extract them, we
automate apps’ running using the Monkey UI exerciser [15].

In detail, we find that 37% of malicious apps can still
launch overlay-based attacks on Andorid 8.0+ in the two-stage
manner described above, indicating a non-trivial threat to even
up-to-date systems. Further, our results reveal a set of sus-
picious overlay properties strongly correlated with the malice
of apps: (1) Overlays are used by 50% of malicious apps,
and they intentionally make their overlays difficult to detect.
(2) Type, Flags, and Format are the three features with the
strongest correlations with an app’s malice, while the new Type
(TYPE_APPLICATION_OVERLAY) in Android 8.0+ is ineffec-
tive to early detection. (3) Overlays’ visual coverage exhibits
distinct distributions between malicious and benign apps. (4) A
programmatically visible overlay can be visually invisible to users,
and this fact is often exploited by malicious apps.

In particular, we notice that although there are 52 overlay-
related features defined in the Android SDK (see Table 1), they fail
to capture several important aspects of overlays in practice. For
example, no existing feature corresponds to whether an overlay
is actually visible to the user when it is being rendered (e.g.,
Figures 1(d) and 1(e)). To address this limitation in the Android
SDK, we introduce four novel features into our study (which can
improve the detection accuracy of our system described later).

Detecting overlay-based malware. Leveraging the above in-
sights, we then develop a system called OverlayChecker to enable
market-scale early detection of overlay-based malicious apps at
the app submission time. Such detection capability is highly
attractive since it does not require OS-level changes and thus can
address the tension between usability and security of previously-
proposed solutions [11], [5], [12]. Based on the characterization
results of malicious overlays, OverlayChecker collects 56 static
and dynamic features from each app. Moreover, we introduce a
normalized feature-frequency encoding scheme, which represents
features with their normalized occurrence frequencies. Compared
with the traditional One-Hot encoding used in our preliminary
work [16], this encoding scheme is able to retain more fine-grained
feature information that is useful in deciding the malice of quite
a few apps. Taking this as input, we detect malicious overlay
behavior via a random forest machine learning model trained with
large-scale, ground-truth data provided by Market-T.

To cope with the large amount of app submissions to Market-
T per day, we make multifold endeavors to architect an efficient

analysis infrastructure. First, we built a lightweight Android em-
ulator that directly runs the Android OS and apps on x86 archi-
tecture, coupled with the state-of-the-art dynamic binary trans-
lation technique [17] to support apps that use Android’s native
APIs. Also, we adopt GPU-assisted acceleration to expedite the
graphic rendering for apps, which intercepts the “micro” graphic
instructions (that are reconstructed from OpenGL instructions by
the graphic driver) and directly executes them on x86 servers’
dedicated GPUs. Further, noticing that static and dynamic analysis
are independent of each other and thus can be done in parallel,
we design a publish-subscribe pipeline to optimize the overall
workflow. With the above efforts, we achieve a speedup of 8–10×
compared to using the default emulator [18] in Android SDK.

Further in practice, we observe that the original Monkey UI ex-
erciser bears three shortcomings: redundant actions, action loops,
and rigid generation of UI events, which could degrade the UI
exploration coverage and hinder the exposure of features. We thus
design an app-aware UI exploration strategy by additionally taking
the specialties of various apps into account. First, we fine-tune
the composition of the generated UI events to reduce redundant
actions for the specific types of apps. Second, we leverage an
app’s UI layout structure and component information to guide
the automatic UI exploration to avoid action loops. Third, we
adaptively tune the generation frequency of certain UI events to
prevent apps from identifying the existence of our emulator and
thus suppressing their malicious activities. As a result, we manage
to achieve a higher (76%→86%) UI exploration coverage with
40% fewer UI events as compared with the default Monkey.
Real-world performance and robustness. OverlayChecker has
been integrated into Market-T as a part of the app review process
since Jan. 2018 and has been constantly optimized. It works under
an intense workload of ∼10K app submissions per day using only
two commodity servers (we run Android 6.0 and 8.0 on the two
servers respectively). The per-app analysis time is ∼1.7 minutes,
and OverlayChecker is able to achieve 97% detection precision
and 97% recall as of Mar. 2020. Through the lens of malicious
overlays, we find that OverlayChecker is especially effective (over
90% accuracy) in detecting certain types of malicious apps, e.g.,
ransomware, adware and porn-fraud apps, due to their heavy
reliance on overlays to launch intended attacks.

Furthermore, we applied OverlayChecker to 10K random apps
in Google Play Store on May 1st, 2020, and detected 25 pre-
viously unknown apps with malicious overlays that were caught
stealing credentials. Although these apps were removed by Google
Play Store within days, these incidents demonstrate that despite
Google’s existing app-security checks, early detection is still
necessary to prevent malware from being made available to users.

We present an in-depth analysis of the random forest model
used by OverlayChecker to investigate whether attackers can
avoid OverlayChecker by adapting their malware’s behaviors. By
interpreting our model, we show that the behaviors of benign and
malicious overlays are sufficiently different, making it difficult
for a malicious overlay to avoid OverlayChecker: most existing
malicious overlay strategies are entirely precluded, and attackers
are left with a significantly weaker range of attack capabilities.

2 BACKGROUND

2.1 Android Overlay Basics
In the Android UI framework, an overlay is a special feature
enabling one app to create an extra View layer that sits on top
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of the host View. Different from the host View which is almost
always in a rectangular shape occupying the full screen of the user
device, an overlay possesses plentiful freedom in terms of shape,
area, and location. As shown in Figure 1, an overlay can be (a)
a small-area circle floating atop the host View at an arbitrary
location, (b) a full-screen rectangle completely covering the host
View, (c) a hollow-out rectangle partially covering the host View,
(d) a single point that is rather difficult to notice, or (e) a rectangle
outside the screen that cannot be noticed by users. All overlays are
able to intercept user input intended for the underlying host View
if certain flags are specified [16]. In brief, overlay is a powerful
UI feature allowing one app to display something on top of others,
which can be used to intercept sensitive user input, or even alter the
user’s perceptions of which app is currently active on the screen.

Each overlay’s appearance is defined by a number of Lay-
out [19] and View parameters [20] (an overlay is an object inher-
iting the View class), as listed in Table 1. Among the appearance
parameters, the X, Y, Width, and Height geometry parameters
are intuitive. Gravity decides the placement of an overlay within
a larger UI container. isOpaque and Alpha together qualify and
quantify the transparency. Background specifies an overlay’s
background image or color. Format defines the desired bitmap
format like RGBA_8888 (meaning that the overlay can be of any
transparency), TRANSPARENT, and TRANSLUCENT.

The capability of an overlay is derived from the speci-
fications of Type, Root, ScreenShot, and Flags. When
an Android app intends to use the overlay feature, it typi-
cally requests the SYSTEM_ALERT_WINDOW permission. Fur-
ther on Android 8.0+, another SYSTEM_OVERLAY_WINDOW
permission should also be requested. More in detail, SYS-
TEM_OVERLAY_WINDOW overlays originally have 6 Types of
display priorities, among which TYPE_SYSTEM_ERROR has the
highest priority–a TYPE_SYSTEM_ERROR overlay can even ap-
pear on top of the lock screen [21], which can be used to launch
serious attacks such as the ransomware attack. With the release
of Android 8.0, to facilitate users’ comprehensive surveillance
on apps’ usage of overlays, the overlay mechanism has been
essentially updated by unifying the original 6 Types of overlays
into a single Type, which also requires users’ explicit approval
at app startup time to display atop other apps. In addition, Root
and ScreenShot define the functionality of an overlay. There
are also 31 Flags specifying various aspects of overlay behavior,
e.g., if FLAG_WATCH_OUTSIDE_TOUCH is set, an overlay can
receive all the UI events outside its coverage area.

Finally, there are two static properties at the app level
that can amplify the capability of overlays: BIND_ACCESSI-
BILITY_SERVICE and PACKAGE_USAGE_STATS. The for-
mer is used to assist Android users with disabilities, and the
latter allows an app to collect the usage statistics of other apps.
Although apps need to explicitly request permission to use these
capabilities, in practice a malicious app can lure users to un-
knowingly grant them, e.g., by abusing the capability from the
SYSTEM_ALERT_WINDOW permission [3].

2.2 Security Practices of App Stores

App stores, such as Google Play Store, Apple App Store, and
Amazon Appstore, are the de facto platform of mobile app distri-
bution. As of the third quarter of 2020, over 2.86 million Android
apps released on Google Play Store (the official app store of An-
droid). Market-T, the app store we collaborate with in this work,

TABLE 1: Android apps’ Layout and View parameters that de-
termine the overlay behavior. The calculated four novel features we
design for detecting malicious overlays are in italic.

Category Parameters

Appearance

X, Y, Width, Height, Gravity, isOpaque,
horizontalMargin, horizontalWeight,
verticalMargin, verticalWeight,
screenOrientation,
isOpaque, Alpha, Background, Format,
dimAmount, screenBrightness,
VisualCoverage, isReallyVisible

Priority Type
Functionality Root, ScreenShot
Quantity ActivityCoverage, NumOfOverlays

Flags

FLAG_FULLSCREEN,
FLAG_LAYOUT_IN_SCREEN,
FLAG_NOT_FOCUSABLE,
· · · · · · (31 in total)

Static BIND_ACCESSIBILITY_SERVICE,
PACKAGE_USAGE_STATS

has released over 6M apps since its launch in 2012, with over 30M
APKs being downloaded by 20M users every day. To protect users
from downloading malicious apps, Market-T conducts a series of
app review procedures to examine ∼10K newly submitted apps
(including both new and updated apps) from developers on a daily
basis. This section takes Market-T as a representative case study to
reveal the practices of today’s app stores for identifying malicious
apps, as well as their utility to OverlayChecker.

To accurately determine the malice of hosted apps, Market-
T conducts a sophisticated app review process consisting of
fingerprint-based antivirus checking, API inspection, and manual
examination. Antivirus checking inspects apps against virus fin-
gerprints from antivirus service companies [16]. API inspection
identifies malicious apps by scanning what Android APIs are in-
voked in their code; its heuristic lies in that certain patterns (com-
binations and orders) of API calls imply serious security threats.
For those apps whose malice cannot be determined through an-
tivirus checking and API inspection, Market-T assigns security
experts to manually examine them with very high precision.

Market-T maintains a large database of malicious apps cap-
tured during the app review process or reported by the users in
the field. The dataset is a precious resource in understanding the
characteristics of overlays used by malicious apps (refer to §3).
Furthermore, the malicious apps recorded in the database, together
with the other benign apps, form a large labeled training set, based
on which supervised learning can be applied to reveal the key
overlay properties associated with malicious apps (refer to §4).

Similar to other app stores, Market-T maintains the category
labels of each app (e.g., game, shopping, and education [22]).
These labels are predefined by Market-T and are selected by app
developers. For malicious apps recorded in the database, Market-
T has another set of labels such as ransomware, adware, and
porn-fraud apps. These labels provide us with opportunities to
understand the motivations and use cases of overlay-based attacks.

2.3 Threat Model

In this work, we assume malicious apps can launch attacks us-
ing either SYSTEM_ALERT_WINDOW overlays, or TYPE_TOAST
overlays. Here we refer SYSTEM_ALERT_WINDOW overlays
to those requesting the SYSTEM_ALERT_WINDOW permissions.
Further, the SYSTEM_OVERLAY_WINDOW permission is a special
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permission on Android 8.0+, and is not granted at runtime. In
fact, apps need to explicitly ask users to additionally grant the
SYSTEM_OVERLAY_WINDOW permission through the permis-
sions manager in system settings. Smart attackers often employ
social engineering approaches to induce users to authorize the
SYSTEM_OVERLAY_WINDOW permission, by purposely request-
ing a set of common permissions (e.g., to use camera, sensors,
location, and SMS) at app startup time. In any case, the at-
tacks can be successfully launched without root privileges. We
assume that malicious apps can use overlays in any form (see
Figure 1), thus confusing the users to misinterpret UI interac-
tions, luring the users to type passwords or grant certain per-
missions, and so on. Further, adversaries can (optionally) launch
more effective overlay-based attacks by acquiring certain per-
missions like BIND_ACCESSIBILITY_SERVICE and PACK-
AGE_USAGE_STATS, or by inferring the UI states in certain ways
like the shared-memory side channel.

We assume that attackers have adopted techniques to obfuscate
their malicious apps and frustrate analysis. Specifically, using
obfuscation techniques [23], application pacing platforms can be
employed to alter the structure of malware code and hide the
use of malicious overlays, which can help malware spoof and
bypass detection mechanisms such as signature matching and
static analysis. Also, malicious apps can use various methods to
detect whether they are running in emulation environments. For
instance, malware can recognize the processor architecture (ARM
or x86) by inspecting cache behavior and system configurations,
and identify the existence of automated UI exerciser from user
actions. If a malicious app notices the existence of an emulator, it
may dynamically change its behavior accordingly.

Moreover, we assume the goal of the adversary to be distribut-
ing malware through a major app store. This is a powerful mode
of attack, since inclusion in an app store “lends credibility” to
the malicious app. Additionally, most Android smartphones are
configured to only allow apps to be installed from app stores by
default. We do not consider attacks where malicious apps are dis-
tributed outside of app stores, since mitigating these “sideloading”
attacks requires client-side defenses that are beyond our scope.

3 UNDERSTANDING OVERLAY BEHAVIOR

3.1 App Dataset

This section presents our analysis of overlay behavior of malicious
and benign apps. Our raw dataset contains all the new and updated
apps submitted to Market-T during Jan. 2017–Sep. 2019. After
removing redundant apps (i.e., APKs with the same MD5 hash
value), we are left with a total of ∼550K apps as our dataset, and
the entire dataset maintained by Market-T includes a huge number
of apps with obsolete overlay usage. For every app in the dataset,
Market-T provides not only its APK file but also its malice and
category labels. Nearly one third (31%) of the apps are labeled
malicious and thus are quarantined in Market-T’s database. Note
that the ratio of malicious apps is relatively high because these
are the submitted apps before the app review process, instead of
those released to users. As introduced in §2.2, since Market-T
adopts a rather sophisticated and effective app review process,
we believe the false positive rate in this labeling is statistically
insignificant [16] and thus has negligible impact on our subsequent
analysis and system design.

3.2 Overlay Feature Extraction

The first step towards understanding overlay behavior is to extract
the features of overlays in each app. Specifically, OverlayChecker
identifies overlay-based apps (i.e., apps that actually use one or
more overlays) dynamically at run time. In Android, all overlays
are created by invoking the addView API of the Window-
ManagerGlobal class, so we can identify overlay-based apps
by checking whether an app has created a System Window
View. Simultaneously, we can extract concerned dynamic features
because they are also attached when the addView API is invoked.
For each overlay, there are static and dynamic features requir-
ing different extraction methods. Static features can be directly
extracted from an app’s APK file. In contrast, dynamic features
only exist at run time when the app is executed, and their number
is much larger than that of static features. In addition to those
original features defined in the Android SDK, we design four
novel features. We will detail these features (refer to Table 1)
in the context of their use cases.

3.2.1 App Emulation

To extract dynamic features of overlays, we explore each app
using the Monkey UI exerciser [15] that can generate UI event
streams at both application and system levels. Whenever Monkey
hits an overlay object, it records 54 dynamic features (refer to
Table 1 for details) for later analysis. We execute apps and the
Monkey tool on Android emulators deployed on a commodity x86
server. However, we do not use the default Google’s Android
device emulator included in the Android SDK [18]. Since the
default emulator is based on full-system emulation built on top
of QEMU, its performance is limited and cannot achieve our goal
of emulating a large number of apps at scale.

Instead, we built a lightweight Android emulator that directly
runs the Android OS and apps on x86 architecture. First, as for the
Android OS we use Android-x86 [24], an open-source x86 porting
of the original ARM-based Android OS. Also, to support apps
that use Android’s native APIs, we implement dynamic binary
translation (DBT) based on Intel Houdini [17] to translate the
ARM instructions into x86 instructions (most dynamic libraries
in Android are based on the ARM ISA instead of x86). Further,
for parallelism we run multiple concurrent emulators on a x86
server, with each bound to one CPU core. Specifically, for a
commodity x86 server (HP ProLiant DL-380) with 5×4-core
Xeon CPU @ 2.50 GHz and 32-GB memory, we run 8 Android
6.0-based emulators and 8 Android 8.0-based emulators on 16
cores concurrently and the remaining 4 cores are employed for
scheduling, monitoring, and logging. Our lightweight emulator
is much more efficient than the default emulator in the Android
SDK—typically it can reduce the emulation overhead by 8–10×.
Within each emulator, generating and executing 100, 1K, 10K and
100K Monkey events take 2, 22, 220 and 2220 seconds on average.
Meanwhile, when executing Monkey’s generated UI events for
an app, we use Xposed [25] to intercept the addView API’
invocation data (including its name and parameters).

Some malicious apps may attempt to recognize whether they
are running on emulators so as to hide their malicious activities.
They typically check static configurations of the system, dynamic
time intervals of user actions, and sensor data of the device to
identify emulators [26], [27]. To prevent adversarial detection, we
made four improvements to our emulators to make them behave
more consistently with real devices and users. First, we alter the
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default configurations of emulators, including their identity (IMEI
and IMSI), network properties, and other properties defined in
the build.prop file such as PRODUCT and MODEL types [26].
Second, we adjust the execution parameters of Monkey to make its
generated UI events appear more realistic [15]. For example, we
tune the throttle parameter with a reasonable value, so that
the occurrence time intervals of the UI events basically comply
with real-world cases. Third, we replay traces of sensor data
(concerning the acceleration, proximity, orientation, and so forth)
collected from a number of real smartphones on our emulators
to improve fidelity [27]. Finally, we customize and obfuscate the
relevant libraries of Xposed, so that the studied apps can hardly
detect Xposed’s hooking behavior [28].

3.2.2 UI Exploration
Detecting malicious overlay behavior requires a high UI coverage
to examine as many overlays. Initially, we used the Activity
coverage as the main metric of UI coverage, as each Android app
specifies its possible (but not necessarily used) Activity objects
in its AndroidManifest.xml configuration file. However,
this metric is overly pessimistic, as it counts Activities that
are not actually referenced by the code. To figure out which
Activities are actually used by an Android app, we write
a script to automatically scan and analyze the configuration file
and the static code of non-obfuscated APKs in our dataset. The
scanning results show that for an average app, 88% of its specified
Activities can be actually referenced. Thus, we define a
more accurate metric, ActivityCoverage, to quantify the
UI coverage. For an app, the ActivityCoverage is the ratio
of detected Activities during emulation over its referenced
Activities in the configuration file.

Over the apps in our dataset, we observe that generating and
executing 100K Monkey events generally achieves the highest
ActivityCoverage. Consequently, it requires around 2220
seconds (= 37 minutes) on average to analyze the overlay behavior
of every single app. However, the abovementioned emulation time
is unacceptable to both app stores and developers in practice. From
the perspective of app stores, the resulting computation overhead
is expensive, e.g., Market-T would need to employ hundreds of
servers to handle its current workload. From the perspective of app
developers, after submitting an app to the store, they would have to
wait for nearly 40 minutes before the app is released to users. This
could significantly impair the prosperity of Market-T, given that
many rival app stores allow a newly submitted app to be released
to users instantly. To address this problem, we carefully balance
effectiveness in terms of ActivityCoverage and efficiency in
terms of emulation time [29]. Figure 2 shows the Activity-
Coverage achieved with increasing running time of Monkey. As
the emulation time increases, the average ActivityCoverage
quickly grows until it is close to 76%; after that, its growth is

flat. Even spending 20× more time to generate 100K Monkey
events can only increase the ActivityCoverage to 78% on
average. Therefore, we choose to run the emulation for ∼100
seconds (5K Monkey events) to achieve a nearly optimal (76%)
ActivityCoverage as the “sweet spot” between effectiveness
and efficiency.

More specifically, in Figure 3 we plot how Activity-
Coverage varies between malicious and benign apps when
5K Monkey events are executed. There is an obvious distinc-
tion between their ActivityCoverage rates—for all typical
statistical metrics (min, median, mean, and max), benign apps
have larger ActivityCoverage rates. The Pearson correlation
coefficient (PCC [30]) between ActivityCoverage and the
malice of apps is non-trivial: PCC = −0.12, with p-value<0.001
(in all experiments throughout this paper, we only use the PCC
results with < 0.05 p-value to ensure their statistical significance;
therefore, we do not specify the p-value when presenting PCC
results hereafter). Hence we hypothesize that malicious apps are
intentionally making it hard for dynamic analysis tools to detect
malicious behaviors. Therefore, we use ActivityCoverage as
a novel feature for detecting malicious overlays.

3.3 Global Statistics
Through the above described app emulation and UI exploration,
we find that overlays are pervasively used by more than 30% of the
Android apps in our dataset (including both malicious and benign
apps). Here we say “more than” because our app emulation and
UI exploration processes are not exhausting all overlays used by
all apps. Using the malicious app labels provided by Market-T
(whose labeling process is detailed in §3.1 and §2.2), we find
that overlays are being used by ∼50% of malicious apps but only
∼27% of benign apps. In the meanwhile, we notice that 37% of
malicious apps can still launch overlay-based attacks on Android
8.0+ in the two-stage manner mentioned in §1.

More in detail, we wonder how many overlays a benign app
and a malicious app use respectively. To this end, we devise a
new feature NumOfOverlays to count the number of detected
overlays in an overlay-based app in our study. In our dataset,
72% of overlay-based benign apps and 91% of overlay-based
malicious apps use only one overlay. Both the average number
(1.1) and maximum number (12) of overlays used in malicious
apps are smaller than those (average: 1.5, max: 28) used in benign
apps [16]. By manually checking a random sample of overlay-
based malicious and benign apps, we find that malicious apps
usually have less functionality than benign apps, and thus do not
need to utilize as many overlays.

3.4 Profiling Key Overlay features
3.4.1 Understanding Static Features
BIND_ACCESSIBILITY_SERVICE. This permission is
granted for accessibility services specially designed to assist
disabled Android users [31]. Unfortunately, because an app
with this permission has manifold powerful capabilities (e.g.,
getting the notification of any event that affects the device,
accessing the full View tree, and programmatically performing
click or scroll actions), this permission can be exploited
to launch powerful attacks [32]. In our dataset, 1.3% of
apps utilize accessibility services, among which 2.5% are
malicious. In particular, 0.12% of apps utilize both accessibility
services and SYSTEM_ALERT_WINDOW overlays, among
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which 1.6% are malicious. Although the number of apps
using this permission is small, we still pay attention to the
simultaneous usages of BIND_ACCESSIBILITY_SERVICE
and SYSTEM_ALERT_WINDOW.

PACKAGE_USAGE_STATS. This permission allows an app to
collect the usage statistics of other apps including the foreground
app. Acquiring it can help a malicious app launch more intelligent
overlay-based attacks. Analysis on our dataset shows that 2.2% of
apps utilize this permission, among which 5.2% are malicious. In
particular, 0.36% of apps utilize both PACKAGE_USAGE_STATS
and overlays, among which 6.4% are malicious. Although the
overlay-based attacks coupled with PACKAGE_USAGE_STATS
are not so devastating as the “cloak and dagger” attacks, we
still need to be cautious of the simultaneous usages of PACK-
AGE_USAGE_STATS and overlays.

3.4.2 Understanding Type and Flag

Type. An overlay can have a total of 16 Types before Android
8.0 was released, among which the six Types listed in Figure 4
are the most frequently used in Android 6.0∼Android 7.1. In
comparison, the remaining 10 Types are together used by less
than 0.1% of overlay-based apps. Most notably, 84% of the
apps that use TYPE_SYSTEM_ERROR overlays are malicious,
and the PCC between TYPE_SYSTEM_ERROR and the malice of
apps is as high as 0.69. This is because TYPE_SYSTEM_ERROR
possesses the high priority enabling overlay to appear on top of
all activity windows, even the lock screen interface [21], which
gives a chance to serious overlay-based attacks. Thereby, the six
most frequently used Types are deprecated and unified into a
new TYPE (TYPE_APPLICATION_OVERLAY) in Android 8.0+
to facilitate users’ comprehensive surveillance on apps’ usage
of overlays. Since the new TYPE is used by both benign and
malice apps, it is ineffevtive for detecting malware and therefore
is not considered as a key fearture. Moreover, compared with
the TYPE_SYSTEM_ERROR overlay, the new TYPE overlay is
limited below critical system windows like the status bar or the
lock screen, and can only appear atop other activity windows after
the explicit authorization of users.

Flag. We study all the 31 Flags of Android overlays.
Figure 5 depicts the statistics of the 13 most frequently used
Flags. We observe that the top four Flags’ correlations
with the malice of apps differ greatly. For example, although
FLAG_NOT_FOCUSABLE is used in 2/3 of overlay-based apps,
only 9.5% of these apps are malicious and the correspond-
ing PCC is as low as -0.55. The reason is straightforward—
a FLAG_NOT_FOCUSABLE overlay cannot get users’ input
events independently (i.e., it also needs the permission of
FLAG_WATCH_OUTSIDE_TOUCH). In contrast, 85% of the apps

that use FLAG_FULLSCREEN overlays are malicious and the
PCC is as high as 0.7. This is because a FLAG_FULLSCREEN
overlay can cover the whole screen (including the status bar) and
thus can easily deceive mobile users.

3.4.3 Understanding Appearance Features
Format and Alpha. Among the 18 appearance parameters in
Table 1, Format is of the highest importance to malicious over-
lay behavior since it determines the basic bitmap transparency
of an overlay. As shown in Figure 6, among the three major
Formats: RGBA_8888, TRANSLUCENT and TRANSPARENT,
RGBA_8888 is not only the most frequently used but also the
most related to the malice of apps. This is because RGBA_8888
means that the overlay can be of any transparency, and thus gives
the overlay the greatest presentation freedom.

Supplementary to Format, Alpha also impacts the trans-
parency of an overlay. Since Alpha is a continuous value lying
between 0.0 (fully transparent) and 1.0 (fully opaque), we man-
ually divide the value scope into three ranges: [0, 0.5], (0.5, 1.0)
and 1.0. From Figure 7, we observe that Alpha = 1.0 is not only
the most frequently used but also the most related to the malice of
apps. This can be reasonably ascribed to the fact that Alpha = 1.0
is the default configuration for a View and few developers would
adjust this configuration. Thus, we infer that Alpha should not
be an important property in detecting malicious overlay behavior.

VisualCoverage. Based on our experiences of manually
examining the layouts of numerous overlays, we propose a novel
appearance feature named VisualCoverage that denotes the
ratio of the host View’s area visually covered by the overlay(s).
When the host View is fully or partially covered by an overlay,
the overlay’s VisualCoverage is calculated by dividing the
intersection area by the area of the host View. A more complex
case is in Figure 8—there is one host View and two overlays on
the screen, so the overlays’ VisualCoverage is calculated by
dividing the shaded area by the area of the host View. In practice,
we find that overlays’ VisualCoverage exhibits distinct distri-
butions between malicious and benign apps [16]. For benign apps’
overlays, VisualCoverage is almost uniformly distributed; for
malicious apps’ overlays, the distribution of VisualCoverage
is highly skewed. Thus, the PCC between VisualCoverage
and the malice of apps is fairly high (0.4).

Y and Gravity. We further consider each overlay’s Vi-
sualCoverage scope, denoting the host View’s geometric
scope visually covered by the overlay. Figures 9 and 10 plot
the heat maps of the VisualCoverage scopes for benign and
malicious apps’ overlays. The frame of each figure represents
the screen of common Android smartphones. Again, we notice
distinct distributions between the overlays’ VisualCoverage
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scopes of malicious and benign apps. Specifically, we observe that
for benign apps’ overlays, the VisualCoverage scopes tend
to locate at the top left corner of the screen (i.e., a small-area
rounded or squared overlay floating at the top left corner, showing
system status information). But for malicious apps’ overlays, the
VisualCoverage scopes do not have a preferred region in
the screen. This indicates that an overlay’s Y coordinate and
Gravity are also correlated with the malice of its affiliated
app—recall that Gravity decides the placement of an overlay
within a larger UI container.

isReallyVisible. Visibility is critical for a user’s per-
ception of an overlay. Unfortunately, a programmatically visible
overlay can be visually invisible to users, e.g., in Figures 1(b)
and 1(c) if the overlay is transparent, in Figure 1(d) where the
overlay is too small to see with naked eyes, or in Figure 1(e)
where the overlay is outside the screen. According to our manual
observations, this fact is often exploited by malicious apps. To
cope with this issue, we calculate a novel feature isReal-
lyVisible based on an overlay’s appearance features including
Width, Height, Alpha, Background, isOpaque, and so
on. The workflow for our calculation of isReallyVisible
is plotted in Figure 11. Among all the apps that have used
overlays, 33% of malicious apps and 13% of benign apps are
using overlays that are not really visible, showing the significance
of isReallyVisible in detecting malicious overlays.

3.5 Summary of the Study Results
Our comparative study leads to a series of useful insights with
respect to malicious overlay behavior: (1) Overlays are used by
more than 30% of Android apps overall in our dataset, and 50%
of malicious apps. (2) On the other hand, both the average and
maximum numbers of overlays used in malicious apps are smaller
than those in benign apps. This is because malicious apps usually
have less functionality than benign apps. (3) We observe malicious
apps intentionally make it hard for dynamic analysis tools to
detect their overlays. (4) Type, Flag, and Format are the three
features that correlate most strongly with an app’s malice, while
the new Type in Android 8.0+ is less effective in early detection,
e.g., 84% of the apps that use TYPE_SYSTEM_ERROR overlays
are malicious (PCC = 0.69) before Android 8.0 was released,
however it should be noted that there becomes a single new Type
overlay in Android 8.0+; more than two thirds of the apps that use
FLAG_FULLSCREEN or FLAG_LAYOUT_IN_SCREEN overlays
are malicious (PCC = 0.68 and 0.55); and 48% of the apps that use
RGBA_8888 overlays are malicious (PCC = 0.45). (5) We design
a complex feature VisualCoverage that reveals distinct distri-
butions between the overlays of malicious apps and benign apps.
(6) A programmatically visible overlay can be visually invisible to
users, and this fact is often exploited by malicious apps. To make

it clear, we develop a novel feature isReallyVisible based
on multiple existing appearance features.

4 SYSTEM DESIGN AND DEVELOPMENT

4.1 System Design and Implementation

Guided by our study results in §3, we build OverlayChecker to
detect overlay-based malware and evaluate its efficacy.

Overview and workflow. As shown in Fig. 12, once an app
is submitted, OverlayChecker first leverages DBT to enable the
app to run efficiently on x86 environments ( 1©). To automate
various app behaviors, we use the Monkey exerciser to automat-
ically generate UI event streams ( 2©). When running the app,
multiple defensive interventions are also implemented to prevent
intentional detection evasion ( 3©). Next, we extract the app’s
requested permissions from its metadata ( 4© 5©), and use Xposed
to capture the invocation of the addView API during the app’s
execution ( 6©). As a result, we distill the key overlay features as
identified in §3 from the above logged data ( 7©). The selected
features are then encoded in a normalization manner ( 8©), and
piped into a machine learning classifier (e.g., random forest) to
determine the app’s malice ( 9©). In the remainder of this section,
we will describe OverlayChecker’s emulation infrastructure used
for dynamic and static analyses, as well as feature engineering
techniques and model design in detail.

Emulation infrastructure. As introduced in §3.2.1, Overlay-
Checker builds its app emulation environment atop a customized
lightweight Android emulator to extract dynamic features of over-
lays. Here we focus on further enhancing the underlying emulation
infrastructure to cope with several real-world challenges.

In detail, we find that the average ActivityCoverage of
the original Monkey exerciser is only 76%, which inevitably omits
some malicious overlays displayed during the app running process.
To better expose and embody overlay features, we further advance
our automatic UI exploration methodology targeting Monkey’s
three major drawbacks – redundant actions, action loops [33],
and fixed-rate generation of UI events, which could degrade UI
coverage and thus hinder feature exposure.

First, in practice we notice that portions of different UI events
vary with apps [34], so the uniformly set composition of UI
events tends to reduce the ActivityCoverage of many apps
due to redundant actions. We thus fine-tune the composition of
the generated UI events (e.g., the portion of touch events) to
reduce redundant actions according to the specific types of apps
(e.g., shopping or news feed apps). Here we perform category-
level rather than app-level analysis for parameter settings given
that many apps are obfuscated and thus may incur high analysis
workload. Second, we find that action loops root in the random
nature of Monkey’s generated events, which is inherently limited
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due to the lack of information regarding an app’s interactable
UI components and visited Activities. With the UI Automa-
tor [35], we leverage an app’s UI layout structures as heuristics
for triggering actions and Activities, as well as record visited
Activities to detect and avoid severe action loops. Third,
since the original UI event generation rate is fixed, we note that the
malware can take the interval as a critical indicator of emulation
and detection; if the interval is smaller than a set threshold, they
would suppress malicious activities (become idle). Hence, once
an app is constantly idle during emulation without responding
to input events (indicating that the app may have recognized the
emulator), we exponentially increase the interval from 500 ms
to quickly reach an ideal interval. Note that we stop increasing
the interval once the overall waiting is over 2 minutes to avoid
significant overhead. If the waiting time exceeds 2 minutes when
checking an app, it is then considered to be highly suspicious and
submitted for further manual inspection. As a result, we manage to
achieve a higher (76%→86%) UI exploration coverage with 40%
fewer UI events; more specifically, 99.6% apps exhibit the same
set of activities on our emulators as on physical devices.

We note that although fine-grained UI tests bring a higher UI
exploration coverage, the execution of more activities increases the
emulation time by an average of∼15%, which may be undesirable
for both app developers and the markets. Therefore, we intro-
duce diversified hardware-assisted virtualization techniques with
Android-x86 into the underlying runtime, such as Intel VT [36]
and KVM [37], to enable our system to fully explore the power of
x86 CPUs. In addition, to further improve the performance, Vir-
tIO [38], a para-virtualization technique, is adopted to accomplish
GPU-assisted acceleration in graphic rendering which is formerly
excuted by the host CPU. Specifically, we first intercept “micro”
instructions from the guest (Android-x86) side graphic driver
(that disintegrate and reassemble the “micro” instructions from
OpenGL instructions) within apps’ rendering pipelines, and then
execute them atop the GPU on the host (x86 server) side [39], thus
essentially surpassing the original CPU-based software rendering.
With these efforts [40], we are able to reduce the average scan
time per app by around 10% as shown in Fig. 14.

Feature engineering. Having optimized the emulation environ-
ment, we then shift our focus to feature engineering. Preliminarily,
we adopt the traditional One-Hot scheme to encode extracted
features, where 1 denotes the occurrence of the corresponding
feature and 0 denotes otherwise. Though yielding generally fine
performance (96% precision and 96% recall), we observe that
One-Hot encoding has a strong dependency on some key features,
resulting in that the malware can accordingly evade detection

TABLE 2: Efficacy of ML algorithms using 56 overlay features vs.
the 52 original overlay features (excluding our four novel features).

Algorithm Precision
(56 / 52)

Recall
(56 / 52)

Training Time
(56 / 52) second

Naive Bayes 0.89 / 0.86 0.75 / 0.75 2 / 2
LR 0.88 / 0.85 0.87 / 0.84 6 / 6
Random Forest 0.97 / 0.94 0.97 / 0.94 35 / 35
DNN 0.95 / 0.93 0.95 / 0.93 79 / 75
XGBoost 0.94 / 0.92 0.95 / 0.91 83 / 82
RBF-SVM 0.95 / 0.91 0.95 / 0.91 1626 / 1625
Linear-SVM 0.93 / 0.91 0.93 / 0.91 11551 / 11542
Poly-SVM 0.93 / 0.89 0.92 / 0.89 59294 / 58762

by not using them, leading to false negatives. Noticing that the
problem is mainly caused by the orthogonal and binary dimensions
of the One-Hot vector which lacks some essential information, we
introduce a new feature-frequency encoding scheme to address
this problem by retaining more fine-grained feature information.

In detail, as shown in §3, we note that there are significant
differences of the occurrence frequencies of key features (e.g.,
Type, Flags, Format and Alpha) between benign and ma-
licious apps, which can be contained to expand the dimension.
Therefore, the feature-frequency encoding scheme is an efficient
approach to obtain ample information. In practice, instead of using
1 or 0 to denote whether the corresponding feature is used or
not, the new scheme replaces the homologous bit with the occur-
rence frequency of each feature. However, experiments show that
prominent discrepancies exist among the occurrence frequencies
of different features. In other words, features that appear more
frequently than others may dominate the attention of machine
learning models, thus impairing the performance of the current
encoding scheme. To address the issue, we devise an enhanced
strategy that transforms the occurrence frequency of each feature
into a normalized value, eliminating the influence caused by the
diversified occurrence frequencies among features.

Malice detection. Through the normalized feature-frequency
encoding scheme, we transform the logs into an m×n-dimension
vector, where m is the number of samples, and n is the total
number of extracted features. Next, we pipe the engineered feature
vector into eight machine learning models (as listed in Table 2)
to compare their performance (in terms of precision and recall)
and overhead (in terms of training time). To reduce the impact of
possible data leakage, which may result in overestimated evalua-
tion results, we leverage 10-fold cross-validation when evaluating
precision and recall. In Table 2 we present the comparison results
of the eight different machine learning classifiers trained on: (1)
the 52 overlay features from the Android SDK, and (2) these 52
features plus the four novel features we developed in §3.4. We
see that our four novel features improve the detection accuracy
of malicious overlays by ∼3% regardless of classifier – note that
such 3% increase is not trivial when the precision/recall is already
very high (>90%), thus demonstrating their utility.

We also notice that the evaluated models’ advantages lie in
different aspects, while no single model outperforms others in all
the metrics. In particular, tree-based models (RF and XGBoot) and
neural network model (DNN) benefit from the rather skewed dis-
tribution of most features in the dataset (e.g., regarding occurrence
frequency). However, performance metrics of the DNN model are
accompanied by the expense of overfitting, due to its complexity
internal network structures. In contrast, the ensemble learning
technique of random forest (RF) integrates the power of multiple
trained models, and largely enhances its generalization ability,
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thus effectively reducing the performance degradation incurred by
overfitting. Also, the model’s simplicity (as compared to complex
network models) and the parallel nature of RF’s internal trees
make the training process rather efficient. Consequently, the RF
model is selected, producing the best precision (97%), best recall
(97%), and an acceptable training time.

In practice, to label newly submitted apps as malicious (M)
or benign (B) in terms of overlay behaviors, OverlayChecker
uses a three-step process. First, OverlayChecker quantifies the
malice of each detected overlay in a given app as a confidence
value [16], denoted as CoM (Confidence of Malice), between 0
and 1.0 using the classification model. Second, OverlayChecker
produces a confidence score for the entire app; to be conservative,
we use the malice of the most malicious overlay in the app. Third,
OverlayChecker labels the app as malicious if the confidence is
above a specific threshold. Based on the malice of known apps
provided by Market-T, we configure the confidence threshold as
0.24 (Malicious: >0.24, Benign: ≤0.24) to minimize the false
positive and negative rates, as illustrated in Figure 15.

Moreover, we use our dataset to compare OverlayChecker
with three recent representative malware detection systems (i.e.,
APIChecker [22], DroidCat [41], and DANdroid [42]). Based on
our collected dataset, we then compare their detection accuracies
with OverlayChecker’s, finding that OverlayChecker behaves the
best as shown in Fig. 16. Furthermore, we inspect the false
positives and negatives of the three researches, observing that the
erroneous judgements are mostly because the relevant apps are
leveraging other means to conduct attacks rather than overlays. To
be more specific, the three researches all pay special attention to
common malicious behavior and features (e.g., APIs, intents and
permissions). In fact, we note that overlay-based malware has little
to do with such common features, making the detection algorithms
designed in the three researches incompetent. In contrast, Overlay-
Checker concentrates on the key features of overlays, and thus is
capable of effectively discovering abnormal overlays (which are
usually malicious) in Android apps.

4.2 System Deployment and Performance

Distributed deployment. Each app’s analysis is originally com-
prised of nine steps as shown in Fig. 12, among which several
steps do not rely on each other indeed and thus can be executed
in parallel. Thereby, we reshuffle the execution sequence of the
analysis steps, as depicted in Fig. 17. We introduce a loosely-
coupled pipeline instead of the original monolithic back-to-back
execution manner, which in detail consists of three components –
dynamic analysis, static analysis, and model classification, work-
ing together to implement a publish-subscribe system. Specifically,
submitted tasks are extracted from a message queue and published
to listening channels. Then dynamic and static analysis channels

ballot for unfinished tasks (i.e., tasks not being analyzed by both
the dynamic and static analysis components) to perform app emu-
lation (corresponding to Step 1© 2© 3© 6© in Fig. 12) and metadata
extraction (Step 4© 5© in Fig. 12), respectively. When all the above
analysis tasks are finished, the classification model can then utilize
the collected feature data to determine an app’s malice (Step 9©
in Fig. 12). As a result, we manage to shorten the average per-app
scan time by ∼10%.

Integration to a real app market. OverlayChecker has been
integrated into Market-T as a part of app review process since
Jan. 2018. It explicitly marked potentially malicious apps with
an “Overlay Risk” annotation. As of Jun. 2018, OverlayChecker
was still able to achieve 96% precision and 96% recall, with the
per-app analysis time being ∼1.7 minutes on average. Market-T
presented this annotation to users when they viewed the app in
the store and encouraged them to take appropriate precautions,
e.g., “This app is using risky overlays (confidence = 0.74), please
disable its overlay permission at once!”. We have continuously
updated our classification model on a monthly basis using data
from newly submitted apps. When the classification model is ready
and integrated into OverlayChecker, the evaluation time for one
app is within 2 minutes. Noticing that all apps in the dataset were
forward-compatible (probably because that as of Sep. 2019 there
were still 40% smartphones not being upgraded to Android 8.0+),
we deploy OverlayChecker on a single commodity x86 server
(refer to §4.1 for the detailed configurations) running Android
6.0. As a result, OverlayChecker is able to check ∼10 K apps
submitted to Market-T per day.

Unfortunately, Market-T reported that OverlayChecker’s de-
tection performance had exhibited a constant trend of degradation
since Jun. 2019 [16] – for example, the precision decreased to
92% and the recall decreased to 90% in Oct. 2019, probably
because some overlay-based malware that could bypass the up-
dated overlay mechanism in Android 8.0 proactively abandoned
the forward compatibility with the original mechanism in Android
6.0 to intentionally evade the detection of OverlayChecker. To
this end, we have upgraded the runtime environment of Overlay-
Checker since Oct. 2019, where each submitted app was analyzed
in parallel on the original Android 6.0-based emulator and the
additional Android 8.0-based emulator (so two commodity servers
are required now). Finally, OverlayChecker can achieve essentially
97% precision and 97% recall at Market-T as of Mar. 2020. We
have provided the up-to-date performance results of the production
system within 12 months, as shown in Fig. 18.

To understand the 3% false positives of the random forest
model, we manually inspected the detection logs and found that
the 97% precision does not actually mean 3% errors in the
classification results. In fact, although we determined that the
3% false positives are benign apps, 97% of them had irregular
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overlay behaviors, because some app developers abuse overlays,
particularly using several TYPE_SYSTEM_ERROR overlays or
FLAG_FULLSCREEN overlays to exhibit certain content (e.g.,
advertisements). The developed apps often have top-ranking fea-
tures [16] (with relatively high Gini importance) that are highly
correlated with malware. As a matter of fact, the 3% false positive
rate is considered acceptable by Market-T, as apps flagged by
OverlayChecker receive a 2nd-round manual review. Specifically,
among the nearly 10K apps submitted per day, there are usually
about 1100 apps flagged by OverlayChecker, among which nearly
1020 are meanwhile labeled as malicious by Market-T (using its
own high-precision security checking mechanisms, refer to §2.2).
Thus, OverlayChecker only has around 80 apps requiring manual
review, and only around a couple of them are false alarms.

As we observe in §3.3, overlays are used by 50% of malicious
apps, so the high recall (97%) illustrates that OverlayChecker is
able to detect nearly half (48.5%) of all malicious apps hosted
on Market-T using solely automated overlay behavior analysis.
Specifically, using the category labels of apps maintained by
Market-T (§2.2), OverlayChecker can detect the vast majority
(90+%) of certain types of malicious apps, e.g., 99% of ran-
somware, 98% of adware, 94% of porn-fraud, and 92% of SMS-
fraud apps. The reason is intuitive: such malicious apps heavily
rely on overlays to launch their desired attacks. Ransomware apps
use TYPE_SYSTEM_ERROR overlays to show ransom messages
on top of users’ lock screens; adware and porn-fraud apps exploit
SYSTEM_ALERT_WINDOW overlays to show ads on top of other
apps; SMS-fraud apps use SYSTEM_ALERT_WINDOW overlays
to capture users’ telephone call information (for sending fraud
SMS messages later).

Important features and malicious behaviors. By explor-
ing the Gini [43] indices of each tracked features, which is a
prevalent metric derived from a trained random forest model to
evaluate feature importance, we understand key features most
essential to our malware detection model. Here, we use the
Gini [43] importance to evaluate important features in our trained
random forest model. Overall, the results [16] are consistent
with our measurement findings in §3.3 and §3.4. For example,
TYPE_SYSTEM_ERROR’s highest importance complies with its
highest correlation with the malice of apps in Android 6.0.
Similarly, the very high importance of FLAG_FULLSCREEN and
FLAG_LAYOUT_IN_SCREEN conform to their high correlations
with the malice of apps. Specially, our introduced novel features
VisualCoverage, NumOfOverlays and isReallyVisi-
ble rank the 6th, 8th and 11th in terms of Gini importance.
Among the 56 features, only two (PACKAGE_USAGE_STATS
and BIND_ACCESSIBILITY_SERVICE, detailed in §3.4.1) are
static and their importances ranked only 12th and 44th. As dis-
cussed in §3.2, this is because many important characteristics of
overlays only exhibit dynamically at app runtime [16]. This thus

concretely shows that it is necessary to consider dynamic features
to ensure high detection effectiveness.

Furthermore, Fig. 19 illustrates the distribution of the overlay-
based malicious behaviors. As shown, porn/fake adware attack
accounts for the largest portion, while malware launching specific
attacks such as remote control app attacks is much less pervasive.
For app categories, gaming apps are most likely to manifest ma-
licious behaviors (∼14% are malicious), which tend to displaying
porn/fake ads, and stealing users’ accounts and passwords. In
addition, office and system apps usually induce users to give them
administrator permissions.

4.3 Extensibility

OverlayChecker is not limited to Market-T and can be directly
applied to other app stores. First, our research methodology can
be applied by other app stores as it only requires the APK file and
security label of each app as preconditions. At present, almost all
app stores can provide the APK files of its hosted apps, and most
mainstream app stores maintain their own database of malicious
apps. Further, although the construction of our classification model
relies on the app dataset provided by Market-T, once the model is
trained OverlayChecker can work independently of Market-T and
help other app stores detect malicious overlay behavior.

In order to validate the practical extensibility of Overlay-
Checker, we applied it to 10 K randomly sampled apps in Google
Play Store on May 1st, 2020. Despite Google’s own sophisti-
cated security checking, OverlayChecker is still able to detect 25
(0.25%) apps with malicious overlay behavior. We note that the
malicious apps can overlay a web browser window on top of the
other apps and load a fake login page to stole users’ credentials.

Interestingly, we observed that these apps were removed from
Google Play Store in early June, 2020, potentially due to reports
from users and researchers. However, since these apps were
officially available, users who installed them were potentially
vulnerable for over a month. This indicates the pressing need today
for an effective and efficient market-scale early detection system.

4.4 Robustness to Evasion Attempts

In the learned classification logic in OverlayChecker, it may not
be difficult for a knowledgeable attacker to pick a single overlay
feature used in our system and make it look (more) benign, but
the key point of OverlayChecker’s detection is to consider all
features of an overlay in combination to determine its malice. This
thus significantly raises the bar of creating a powerful malicious
overlay, making the detection in OverlayChecker difficult to evade
even if the attacker can reverse engineer the classification model
employed by OverlayChecker (e.g., by trial-and-error attempts).

In particular, the robustness of OverlayChecker is derived from
the random forest classification model. The organization of the
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trained classifier precludes attackers from adopting the vast ma-
jority of malicious techniques in their overlays. For example, the
most famous class of overlay-based attacks, “cloak and dagger”
attacks [11], can only go through a fixed decision path [16],
which always results in a malicious classification in our model.
An attacker seeking a benign label must sacrifice many powerful
capabilities, such as binding to accessibility services, accessing
user events, or displaying over the full screen. This seriously limits
the power of the attacker’s overlays, since most existing mali-
cious overlay strategies are precluded (demonstrated by the 97%
precision/recall in §4.2). Since the model is updated frequently,
such classification logic will become even more restricted after
considering more malicious overlay behaviors in the future.

5 RELATED WORK

Overlay-based attacks. The most direct overlay-based attacks
construct deceptive overlays, confusing users to misinterpret UI
interactions. Figure 1 classifies such attacks into five groups. First,
as shown in Figure 1(a), malicious redressing overlays can be
constructed to impersonate small UI widgets (e.g., buttons) as a
part of the current UI window, thus triggering users to click [3].
Second, malicious transparent overlays, as shown in Figure 1(b),
are made invisible to cover victim apps, causing users to see the
visible one but operate on the invisible one. Massive GUI hijacking
attacks based on these transparent overlays have been reported to
lure users to type passwords (by hijacking keyguards) or grant
permissions (by hijacking security alerts) [4], [5], [7]. Malicious
transparent overlay attacks can also be launched through Web-
View in Android to compromise web content [8]. Third, as shown
in Figure 1(c), malicious hollow-out overlays selectively uncover
UI components of victims apps, misleading users over the meaning
of the interaction by manipulating the covered overlay [3]. Fourth,
malicious hover overlays (in Figure 1(d)) are too tiny in size to
be noticed visually. For example, hover overlays have reportedly
been abused by malicious apps to capture sensitive inputs (e.g.,
passwords and credit card numbers) [9], [11]. Finally, malicious
overlays outside the screen (in Figure 1(e)) cannot be noticed by
users, but can still maliciously capture UI events. Overlay-based
attacks can also be constructed indirectly through UI inference
and user behavior analysis. An adversary can launch overlay-
based attacks by inferring UI states using shared memory side
channels [6]. Moreover, the location of screen taps on mobile
devices can be identified from certain sensors [44]. This empowers
non-trivial overlay-based attacks based on users’ tapping behavior.
Attack defenses. Bianchi et al. propose an on-device defense
(known as WhatTheApp) that adds a security indicator to the sys-
tem navigation bar to identify the top Activity and inform users
about the origin of the app with which they are interacting [5].
However, WhatTheApp is vulnerable to timing attacks because the
security indicator is calculated periodically—a malicious overlay
can be inserted within the period. Furthermore, attackers can
bypass the periodic check by rendering a malicious overlay on top
of the victim app and then quickly hiding it. To fix this problem,
Overlay Mutex was proposed to prevent a background non-system
app from rendering on top of any foreground apps [7].

Moreover, dynamic approaches for capturing malicious over-
lays at runtime have been proposed [45]. However, as these
approaches use runtime monitors, they incur considerable user-
side resources (e.g., CPU and battery usage). Additionally, the
alert windows for reporting malicious overlays can themselves be

attacked by malware. DECAF and OverlayChecker have essen-
tial methodological differences. In particular, DECAF leverages
legally enforceable terms and conditions to detect ad fraud, while
OverlayChecker acquires its detection mechanisms via a compar-
ative study of the overlay behavior between benign and malicious
apps, since there are no regulations on the overlay usage.

6 CONCLUSION

Usability and security often constitute two sides of a tool in real
world. At present in the Android OS, there is enormous tension
between the remarkable usability and severe security threats of
overlays. Without effective countermeasures, attackers can alter-
natively exploit the original overlay mechanisms on Android 6.0
or the updated overlay mechanisms on Android 8.0+ to launch
overlay-based attacks. This paper addresses this tension by ex-
ploring the possibility of enabling the detection of overlay-based
malicious apps at the app market level. We conduct a comparative
study of the overlay behavior between benign and malicious apps,
based on a large-scale, ground-truth dataset from Market-T, one
of the world’s largest Android app stores. Guided by a number
of useful insights revealed by our study, we design and deploy
the OverlayChecker system with multi-fold systematical efforts
to quickly and automatically detect overlay-based malicious apps
with high precision and recall. OverlayChecker is integrated into
Market-T as an important part of the app review process, and we
apply OverlayChecker to random apps in Google Play Store to
further confirm its efficacy.
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