This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

IEEE TRANSACTIONS ON MOBILE COMPUTING

Aging or Glitching? What Leads to Poor Android
Responsiveness and What Can We Do About 1t?

Hao Lin, Student Member, IEEE/ACM, Cai Liu, Zhenhua Li, Senior Member, IEEE/ACM,
Feng Qian, Member, IEEE/ACM, Mingliang Li, Ping Xiong, and Yunhao Liu, Fellow, IEEE/ACM

Abstract—AImost all Android users have ever experienced poor responsiveness, including the common frame dropping events—slow
rendering (SR) and frozen frames (FF), as well as the uncommon Application Not Responding (ANR) and System Not Responding
(SNR) that directly disrupt user experience. This work takes two complementary approaches, controlled benchmarking and in-the-wild
crowdsourcing, to comprehensively understand their prevalence, characteristics, and root causes, which turn out to be significantly
different from common understandings and prior studies. We find that SR, FF, ANR, and SNR all occur prevalently on all the studied
hardware models of Android phones, and better hardware does not seem to relieve ANR/SNR. Most surprisingly, they are oftentimes
ascribed to defective software design that incurs substantial resource overuse—lightweight apps can experience severe SR/FF events
due to redundant Ul rendering, and the most ANR/SNR events stem from Android’s aggressive implementation of write amplification
mitigation. In fact, the former can be effectively overcome by simplifying the apps’ Ul hierarchy, and we design a practical approach to

address almost all (>99%) of the latter while only decreasing 3% of the data write speed with large-scale deployment. We have

released our measurement code/data to the research community.

Index Terms—Android; responsiveness; slow rendering (SR); frozen frames (FF); Application Not Responding (ANR); System Not
Responding (SNR); redundant Ul rendering (RUIR); write amplification mitigation (WAM).

1 INTRODUCTION

R Esponsiveness is a key metric that impacts smartphone
user experience. Poor responsiveness would impair the
productivity, satisfaction, and engagement of users. Specif-
ically on Android, if a UI (graphic) frame takes more than
16.67 milliseconds (ms) to render, it is deemed as a slow
rendering (SR) event; moreover, if the rendering time exceeds
700 ms, it is a frozen frame (FF) event [1]. Together SR and
FF are also known as frame dropping events. Worse still, if a
foreground app does not respond to user input or system
broadcast for 5 seconds, or a background app does not
respond to system broadcast for 10 seconds, an Application
Not Responding (ANR) event will be triggered and a system
dialog will be displayed [2]. The dialog asks users to either
continue wait or kill the app, neither of which leads to
pleasant user experience. Further, when a critical system
thread (e.g., I/O and UI) does not respond (i.e., is blocked)
for one minute, a restart of the system will be forced [3],
which we call a System Not Responding (SNR) event.

Over the years, tremendous efforts have been made to
optimize the responsiveness of Android at both the system’s
thread model and apps’ programming model. For the for-
mer, dedicated render threads [4] are introduced to decouple
GPU rendering tasks from common CPU tasks, while V-
Sync [5] is leveraged to coordinate the GPU and CPU'’s
execution. For the latter, Android currently requires all Ul
modification operations to be pushed to the main thread [6]
for prioritized processing. Despite these efforts, SR, FF,

e H. Lin, Z. Li, M. Li, and Y. Liu are with Tsinghua University (e-mail:
{linhaomails, lizhenhua1983, limingliang0527, yunhaoliu}@gmail.com).

e C. Liu and P. Xiong is with Xiaomi Technology Co. LTD, China ({liucai,
xiongping1}@xiaomi.com).

e F Qian is with University of Minnesota, MN, USA (fengqian@umn.edu).

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.OEqI ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

ANR, and even SNR are still prevalent on Android [7],
[8]. SR and FF occur frequently in daily usage, while ANR
and SNR are relatively uncommon but can directly impact
user experience. Unfortunately, little have we understood
regarding their respective prevalence, characteristics, and
root causes, due to the lack of measurement and analysis
of different types of poor responsiveness. Such a lack of
understandings, insights, and datasets significantly hinders
practical solutions to address the problem.

Study Methodology. Conducting a comprehensive and
in-depth study on the poor responsiveness events is chal-
lenging. First, capturing fine-grained system status is crucial
to root cause analysis, but is not sufficiently supported by
existing mobile systems (as will be discussed in §2). Second,
the remarkable distinctions between SR/FF and ANR/SNR
(in terms of occurrence frequencies and the underlying
mechanisms) require dedicated and considerate approaches
to effectively collect data for all types of events.

To address the challenges, we devise a continuous
system tracing framework for collecting detailed in-situ
system-level data during poor responsiveness events, which
combines the monitoring of common system status indica-
tors (including CPU usage, memory consumption and I/0
activity) with the instrumentation of critical system services
to complete the puzzle. We modify existing Android tools
and/or systems to realize this framework.

Specifically, for SR and FF, we develop a lightweight
(in terms of computation) kernel tracing tool by customiz-
ing atrace [9], the debugging tool of Android, so as to
efficiently trace critical system functions concerning frame
rendering in real time in a non-intrusive manner (i.e., no
system modification but only toolchain customization). Un-

plore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

fortunately, for ANR and SNR, similar debugging tools and
the built-in monitoring facilities of Android cannot provide
sufficient diagnostic information regarding several impor-
tant system services even with root privileges. We thus have
to customize the vanilla Android Framework layer to record
these system services” end-to-end call stacks.

Next, we design complementary approaches to measure
the poor responsiveness of Android smartphones, involving
15 hardware models equipped with different Android ver-
sions. For SR and FF, our tracing framework incurs trivial
computation/memory overhead, but requires debug (adb)
privilege and sometimes nontrivial network traffic cost,
therefore making large-scale measurements hard to conduct.
We thus resort to controlled benchmarking by synthetically
generating representative workloads. We automate a series
of popular apps on the 15 experimental smartphones, and
collect fine-grained data regarding SR/FF in the meantime.

On the other hand, ANR and SNR are not often observed
in a common smartphone’s daily usage, so small-scale
measurements can easily lead to biased or even incorrect
results. Fortunately, in collaboration with a major Android
phone vendor called Xiaomi, we obtain a large-scale in-the-
wild measurement opportunity for ANR/SNR. We invited
the active users in Xiaomi’s smartphone community to
participate in our measurement study; 30,000+ users opted
in and collected data for us for three weeks, involving 15
different models of Android phones. All data are collected
with informed consent of opt-in users, and no personally
identifiable information was collected.

Prevalence and Characteristics. Our measurements reveal
that all types of poor responsiveness occur prevalently on
every one of our studied hardware models. In particular, as
many as 4.9%-18% of the rendered frames are subject to SR
or FF under typical workloads. On average, 1.5 ANR events
and 0.04 SNR events occur on an Android system during the
3-week measurement, and the maximum number of ANR
(SNR) events reaches 37 (18) on an Android system.

In detail, the time interval of consecutive SR/FF events is
~0.5 seconds, indicating that such events have considerable
temporal locality; on the contrary, ANR and SNR are highly
correlated in terms of occurrence probability but weakly
correlated in terms of occurrence time (i.e., an SNR event
is usually not caused by an ANR event, and vice versa).
While better hardware significantly reduces SR and FF, it
surprisingly does not seem to relieve ANR/SNR—among
the 15 hardware models, the six oldest and the six latest
experience almost the same number of ANR events per
phone; the six oldest models experience even 50% fewer
SNR events per phone than the six latest models. In ad-
dition, as Android evolves from version 7.0 to 9.0 where
considerable performance optimizations have been added,
there are 74% fewer ANR events but 33% more SNR events.

Root Cause Analysis. To uncover the root causes of poor
responsiveness, we develop automatic analysis pipelines for
different types of event data. For SR and FF, we analyze the
hierarchical tracing data logged by us to obtain the critical
function call path of each rendering stage for a Ul frame and
its correlation with essential application and system events.
We locate the most time-consuming stage in most SR/FF
events as the measure/layout step, where the major work-

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

load lies in the calculation of UI components’ locations and
sizes. Most surprisingly, we observe that some seemingly
lightweight apps with fairly simple Ul functionalities, such
as Gmail, can experience even more severe SR/FF events
compared to video streaming and gaming apps. Through
careful examination of our collected traces, we attribute this
counter-intuitive phenomenon to the redundant Ul rendering
(RUIR) [10] problem of such apps, which stems from a subtle
defect of Android’s painter’s algorithm [11] that renders Ul
components in a bottom-up manner.

For ANR and SNR, our pipeline processes the crowd-
sourced logs by first extracting the blocked threads, and
then generating their wait-for graph [12] to figure out the
critical thread that leads to ANR/SNR. Based on this, we
classify each ANR/SNR event into a root-cause cluster
using similar-stack analysis [13], and manually analyze the
root cause of unbiased samples in each dominant cluster.
The correctness of our analysis is validated using a differ-
ent set of unbiased samples. Eventually, we discover four
major root causes of ANR/SNR, among which the largest
one comes from Android’s aggressive implementation of
write amplification mitigation (WAM) [14], an I/O mechanism
which was supposed to improve the user experience.

Mitigation Practice. Although there is no silver bullet for
all the bugs and defects in Android software design, we
notice that the critical root causes for SR/FF (i.e., RUIR) and
ANR/SNR (i.e., WAM), can both be effectively addressed.
For RUIR, our suggestion is leveraging the dynamic layout
inspector tool offered by Android SDK [15] to examine an
app’s Ul hierarchy. Developers can then easily locate and re-
move overlapped Ul components, redundant backgrounds,
and problematic alpha settings to simplify the UI hierarchy.
To demonstrate the practical efficacy, our optimizations on
popular apps with RUIR problems have already yielded
promising results, reducing SR/FF by an average of 27%.
As for Android’s aggressive WAM strategy, a straight-
forward fix is to batch WAM. However, Android’s batched
WAM implementation is rather ineffective. First, its lazy
nature (at most once a day) cannot mitigate write amplifica-
tion in time. Second, it cannot be interrupted once started,
leading to heavy I/O. Third, if killed by users, the process
will restart from the head. To address the issues, we design
a practical WAM by making batched WAM fine-grained and
non-intrusive. It records the deleted data amount (Sy), and
uses a data-driven approach to decide a proper threshold to
trigger batched WAM on demand, achieving both timely
mitigation while amortizing the cost. We also make our
batched WAM interruptible and resumable. After rolling
out our design on part of the 30,000+ opt-in users’ phones,
it reduces almost all (>99%) ANR/SNR events caused by
WAM. Our design has been further adopted by five stock
Android systems since May 2019, benefiting ~20M users.

Contribution & Data/Code Availability. The above ef-
forts measure and tackle complementary aspects of Android
responsiveness, including the frequent SR/FF events and
the disruptive ANR/SNR events, thereby forming a holistic
landscape of Android responsiveness problems and their
practical solutions. Our data and code are released in part
at https://Android-Poor-Respond.github.io with detailed
guides to benefit the community.

plore. Restrictions apply.

https://Android-Poor-Respond.github.io

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

2 METHODOLOGY

We conduct complementary controlled benchmarking and
large-scale in-the-wild measurements on all types of poor
responsiveness events to comprehensively understand the
problems. This is enabled by our continuous system tracing
framework for collecting find-grained system-level data,
and our automatic pipelines for root cause analysis.

2.1 Continuous System Tracing Framework

To help app and system developers address the poor respon-
siveness problems, Android provides several debugging
tools and built-in facilities to record diagnostic information
regarding SR, FF, ANR and SNR events, which, however,
are insufficient to uncover the root causes of the problems.
Specifically, for SR and FF that manifest as rendering per-
formance issues, Android only monitors and reports the
events’ occurrences (which can be acquired through the
dumpsys system utility) as such events occur frequently in
practice and thus traditional debugging method of call stack
logging could incur considerable time overhead.

On the other hand, for ANR and SNR which are both
response timeout events happening to an app process or a
system thread, Android further records a series of additional
diagnostic information including call stack of the target
app process (only for ANR), call stacks of a predefined set
of system service processes such as SystemServer and
MediaServer, and the blocked threads. Unfortunately, we
find that the above information is still insufficient for root
cause analysis in practice due to missing the call stacks
of several important system service processes, such as the
Vold service (Android’s storage volume daemon). This is
because we constantly observe that the target app processes
interact with these system services and we intend to obtain
the visibility into those services that are not included in
Android’s diagnostic information.

To address the challenges, we modify existing Android
tools and/or systems to build a continuous system tracing
framework for efficiently collecting detailed system-level
data during poor responsiveness events. To this end, our
framework pieces together the in-situ system panorama by
combining the monitoring of common system status indi-
cators (including CPU/memory usages and 1/O activity)
with the instrumentation of critical system services, which
are carefully selected to collect concerned information while
avoiding excessive computation and memory overhead.

Tracing Framework for SR/FE. To select key system
service instrumentation points for SR/FF, our insight is
that the function call paths of frame rendering in Android
mostly follow a fixed pattern, because almost all the apps’
rendering tasks are realized in a four-stage fashion—1) mea-
suring that calculates each Ul component’s size (e.g., height
and width), 2) layout that decides the relative positions of
different Ul components, 3) drawing that renders the Ul
components on a canvas based on their measured sizes and
layout, and 4) composition that merges the app’s canvas with
those of other processes (e.g., the system status bar and
navigation buttons) to produce the final display for users.
In practice, the first two stages are accomplished by the
app’s main thread, the drawing stage is done by a dedicated
render thread, while the composition stage is realized in a

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

system service called SurfaceFlinger, which manages all
the other processes’ rendering canvases.

With this insight, we propose to selectively instrument
(a total of 28) concerned system functions involved in the
above four rendering stages and trace their calls throughout
the lifecycle of a target app. This enables us to efficiently
collect fine-grained system-level data regarding SR and FF.
To realize this, we customize the atrace utility of Android
to implement the instrumentation of the 28 concerned sys-
tem functions in a non-intrusive manner, which does not
require root privileges or system modifications, but only
debug privileges accessible to common app developers.
During an app’s running, our customized atrace will
record the begin and end timestamps of the instrumented
functions in a kernel ring buffer. We also activate other
critical trace points already provided by at race, including
those of Binder transaction, I/O event, and CPU scheduling
to facilitate analyzing the problems.

We implement this tracing framework as a debugging
tool running on common PCs. When collecting data for
SR/FF on a phone, the tool would load and initiate our
customized atrace into the phone through adb commands
(since the tracing requires debug privilege), and then pull
data from the kernel ring buffer to the PC it runs on
through network connections between the phone and the
PC. The data pulling is necessary because the atrace ring
buffer can only hold 15-second tracing data in practice.
Consequently, while our benchmark toolchain incurs only
~1% CPU overhead and ~10 MB memory overhead for a
common Android device, the network traffic is nontrivial—
around 40 MB per minute.

Tracing Framework for ANR/SNR. As discussed above,
for ANR and SNR, we are interested in the call stacks of
several critical system services which frequently interact
with apps in practice. Unfortunately, tracing tools similar
to atrace and the built-in monitoring facilities of Android
cannot provide such diagnostic information even with root
privileges. As a consequence, we are unable to build our
tracing framework without modifying the Android Frame-
work layer. Therefore, we develop a customized Android
system, called Android-MOD, to collect additional infor-
mation essential for our analysis by modifying the code of
vanilla Android versions 7.0, 8.0 and 9.0.

Our data collection requires an Android device to install
(or upgrade to) Android-MOD. However, once it is installed,
our data collection is lightweight and incurs negligible
runtime overhead. Note that our modifications only in-
clude logging additional lightweight system-level informa-
tion and the logging is triggered only upon the occurrences
of ANR and SNR events. Eventually, we observe only KB-
level overhead for storage and negligible overhead for CPU
and memory, compared to Android’s original mechanism.

2.2 Complementary Measurements

With the devised system tracing framework, we next design
complementary approaches to measure the poor respon-
siveness of Android smartphones, so as to accommodate
the distinctions between SR/FF and ANR/SNR in terms of
occurrence frequencies and the underlying mechanisms.

plore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

Our measurements involve 15 phone models with differ-
ent hardware and software configurations as listed in Table 1
to collect in-depth data. The phone models cover low-end
(i.e., the 5 models equipped with the SDM 450, SDM 625 and
SDM 636 CPUs), middle-end (i.e., the 5 models equipped
with the SDM 660 CPU) and high-end models (i.e., the 5
models equipped with the SDM 835 and SDM 845 CPUs)
of a major Android phone vendor, Xiaomi, with which we
collaborate to conduct the study (as to be detailed soon).
Note that although our studied models are from a single
vendor (Xiaomi), we believe our findings are also applicable
to other vendors’” Android systems. This is because different
vendors (including Xiaomi) typically adopt the same set of
core Android components [16]-[19]. Also, vendors’ system
customizations are required to pass Google’s CTS tests [20]
to ensure that they have consistent functionalities and thus
do not break compatibilities with existing apps.

Controlled Benchmarking for SR/FE. As introduced
above, for SR and FF, our tracing framework incurs trivial
computation/memory overhead, but requires debug (adb)
privilege and sometimes nontrivial network traffic cost,
therefore making large-scale measurements hard to conduct.
We thus resort to controlled benchmarking, which synthet-
ically generates representative workloads on devices and
monitors SR and FF occurrences in the meantime, while
leveraging the system tracing framework to efficiently cap-
ture in-situ traces of the concerned function calls involved
in the four-stage rendering during the benchmark process
for subsequent analysis.

In more detail, we use the top-10 most downloaded apps
from Google Play as of Nov. 21st in 2021 for benchmarking,
covering seven major app categories. Table 2 lists the 10
apps and their corresponding app categories. To synthesize
the benchmark workloads, we define a series of interactions
with each app based on its functionalities and Ul layouts,
which are extracted by traversing the Activities of the
app using Ul Automator [21], the Ul testing framework of
Android. The workloads are defined on a per Activity
basis, as each Activity contains a different Ul layout.

Specifically, for social, email and messaging apps, we
find that their main Ul layouts are typically composed of
a scrollable list (i.e., the message list) and several clickable
items (i.e., message items). We thus define the correspond-
ing workloads as scrolling the list and clicking the items
to mimic users” viewing and checking the messages. For
music and video apps, we define the workloads mainly as
viewing and playing the multimedia contents which are
the apps’ primary functions. For web browsers, we access
Alexa Top-10 websites [22] and scroll to view them. In
particular, for a scrollable UI component, we would leverage
the f1ingToEnd API of Ul Automator to scroll to the com-
ponent’s end at the default rate, which performs a center-
to-top (or center-to-left/right depending on the scrollable
directions) swipe in 25 milliseconds for each action and
repeats the action until the component is scrolled to the
end. Also, we would wait for the previous action to finish
and the UI to be idle (which can be achieved through the
waitForIdle API) before initiating the next action. For
gaming apps, however, their Ul components are usually
not traditional Android components and thus cannot be

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

Table 1: Hardware and OS configurations of our measured
phone models, ordered by hardware configurations. In
particular, all the models” CPUs are octa-core Qualcomm
Snapdragon Mobile (SDM) CPUs.

Model CPU Memory Storage Android
1. Redmi 5 SDM 450@1.8 GHz 3GB 32GB 7.0
2. Mi Al SDM 625@2.0 GHz 4GB 64 GB 7.0
3. Mi Max 2 SDM 625@2.0 GHz 4GB 64 GB 7.0
4. Mi Max 3 SDM 636@1.8 GHz 6 GB 64 GB 9.0
5. Redmi Note 5 Pro SDM 636@1.8 GHz 6 GB 64 GB 7.0
6. Mi A2 SDM 660@2.2 GHz 6 GB 64 GB 8.0
7. Mi 8 Lite SDM 660@2.2 GHz 6 GB 64 GB 9.0
8. Redmi Note 7 SDM 660@2.2 GHz 6 GB 64 GB 7.0
9. Redmi Pro 2 SDM 660@2.2 GHz 6 GB 64 GB 8.0
10. Mi Note 3 SDM 660@2.2 GHz 6 GB 64 GB 7.0
11.Mi 6 SDM 835@2.3 GHz 6 GB 64 GB 8.0
12. Mi Mix 25 SDM 845@2.8 GHz 6 GB 128 GB 8.0
13. Mi 8 Pro SDM 845@2.8 GHz 8 GB 128 GB 9.0
14. Mi Mix 3 SDM 845@2.8 GHz 8 GB 128 GB 9.0
15. Black Shark SDM 845@2.8 GHz 8 GB 128 GB 9.0

Table 2: All 10 apps used for benchmark ordered by the
occurrence rate of SR/FF events.

Application SR/FF Occurrence Rate Category
Facebook 18.65% Social

Gmail 16.02% Email

Subway Surf 15.28% Gaming

Clash of Clans 13.34% Gaming

Chrome 12.08% Web Browser
Instagram 11.96% Social

Spotify 11.66% Music

YouTube 9.65% Video

Messenger 6.76% Instant Messaging
WhatsApp 3.44% Instant Messaging

identified by Ul Automator. For them, we set the workloads
as a series of actions to finish a game set by manually
identifying the components. The detailed actions and setups
of our benchmark workloads for each app can be found at
https:/ / Android-Poor-Respond.github.io.

To run the benchmarks, we execute the workloads on
Android phones through UI Automator [21]; typically, each
app will be run for one minute, which is sufficient for us to
cover all the interactable Activities of an app in practice.
We then run the controlled benchmarking on the 15 studied
Android phones to collect data.

Large-Scale Measurement for ANR/SNR. On the other
hand, ANR and SNR are not often observed in a common
smartphone’s daily usage, so small-scale measurements can
easily lead to biased or even incorrect results. Fortunately,
in collaboration with a major Android phone vendor called
Xiaomi, we obtain a large-scale in-the-wild measurement
opportunity for ANR/SNR. In Oct. 2018, we invited the
active users in Xiaomi’s smartphone community through
email to participate in our measurement study by up-
grading to Android-MOD, our customized Android system
that realizes the continuous system tracing framework for
ANR/SNR, on their phones. Eventually, more than 30,000
users opted in. We explicitly informed the opt-in users that
Android-MOD is a lightweight update that will not affect
their apps, data, OS version, or system performance. The
recorded ANR/SNR data were uploaded to our data server
when there is WiFi connectivity. The measurement lasted for
three weeks from Nov. 1st to Nov. 21st in 2018.

plore. Restrictions apply.

https://Android-Poor-Respond.github.io

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

Binder Activity, /O Event and |_~, __________

CPU Scheduling Info

App Thread:

'
1
N ; Eoo
Buffer-Aware Decompose ! | !
Event »| Aop 3 1 |Trace| -+ | Trace|]
ven Traces| | I —
Traces Event Extraction 1 '
1 v
1
1
]
1

|

1
| Thread; _ Thready |

[1: Function Call {”"}: CPU Scheduling [~ ;: /O Event [~ 7: Binder Activity

App Threadz Critical Function Call Path

[[render|]

— | Thread idiing. 60%

SurfaceFlinger IBinder|

P el

Critical Function Call Path Timing Correlation

CPU Usage; |

CPU/Memory Usage

Blocked
Thread

Analyze

AY
Event
Traces

Thready Threadk

App/Critical
Process

e Wait-for
N Graph
. Decompose | | Trace |+ | Trace
races Wait/Lock/IPC

End Node

Memory Usage; i

Java Funclions; 1y | similar-Stack

Native Libraries; | Analysis
Process Names; |

|
|
|
|
o
Kernel Functions; | |
|
Number of Locks; | |
|

|

Traces of System Services

Figure 2: Workflow of our automatic pipeline for analyzing the root causes of ANR and SNR events.

2.3 Root Cause Analysis Pipelines

To figure out the root cause of a single poor responsiveness
event, app or system developers usually analyze its corre-
sponding log by hand. However, such manual analysis does
not scale. Therefore, we devise automatic analysis pipelines
for extracting root causes from the collected tracing data.

Analysis Pipeline for SR/FE. For SR and FF, our pipeline
is based on our devised buffer-aware hierarchical timing corre-
lation root cause analysis method, which first extracts true
SR/FF events from the data by paying special attention
to Android’s frame buffering mechanism to rule out false
positives, and then exploits the hierarchical nature of the
kernel tracing data to locate the critical rendering function
call path and its highly correlated system/app events based
on their consumed time. Figure 1 shows the basic workflow
of our automated pipeline.

Specifically, to extract SR/FF events from the tracing
data collected in §2.2, we can calculate the time consumed
for rendering a frame using the timestamps of the functions
called during the frame’s different rendering stages. Gen-
erally, if a frame takes more than 16.67 (700) milliseconds
to render, we know that an SR (FF) event has occurred
based on Android’s definition [1]. However, we find that
this simple calculation suggested by Android introduces
many false positives in practice.

Delving deep, we find that such false positives stem
from Android’s triple buffering mechanism. Recall that
in the composition stage of frame rendering, an app
would send its canvas (which is a memory buffer) to
the SurfaceFlinger service to composite the final dis-
play. Meanwhile, SurfaceFlinger should give back its
previously composited canvas buffer to the app so that
the app can draw the next frame on it, i.e., the app and
SurfaceFlinger “swap” their buffers. To reduce the app’s
waiting SurfaceFlinger in the swapping process, An-
droid introduces triple buffering, where the app holds two
canvas buffers (denoted as Buf fer; and Buf fers) and
SurfaceFlinger holds one buffer. In this way, even if
SurfaceFlinger is busy dealing with its buffer and can-
not swap it with Buf fer;, the app can directly draw on

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

Buf fery without waiting for swapping, therefore improv-
ing the responsiveness of Android.

When that happens, Buf fer, becomes a “redundant”
canvas buffer. As a result, even if the next frame takes
more than 16.67 milliseconds to render, Buf fers can be
swapped into SurfaceFlinger, thus avoiding SR/FE
Unfortunately, simple frame time calculation would still
determine this case as SR/FF since the frame rendering
time is long, leading to false positives. To cope with this,
we take the number of ready buffers of the app into account
(which can be known from its Binder queue)—we determine
a frame with long rendering time as a true SR/FF event only
if there is zero ready buffer.

Upon detecting an SR/FF event, we further attempt
to pinpoint its root causes based on the fine-grained sys-
tem tracing data we collect. To this end, we find that the
tracing data bear inherent hierarchy, i.e., the calling rela-
tions between functions—if a function F4’s begin/end time
wraps that of another function Fg, we know that F4 calls
Fp. Given this, we can extract the most time-consuming
rendering stage based on different stages’ execution time.
However, in practice we notice that the rendering of a frame
is usually parallelly performed in multiple threads or even
processes (as discussed in §2.1) for optimal performance.
Therefore, even if a rendering stage consumes a long time,
it may not be on the critical function call path that decides the
final rendering time. As exemplified in Figure 1, we thus
further extract the critical path by identifying the longest
call path in relevant rendering threads’ tracing data.

After uncovering the critical function call path, we next
correlate it with the in-situ Binder transaction, I/O event
and CPU scheduling information we collect to pinpoint the
actual causes in the system. Specifically, for Binder transac-
tion and I/0 event, we calculate the correlation value as the
proportion of time used to accomplish them in the critical
path. For CPU scheduling, we use the proportion of thread
idling, waiting or blocking time as the correlation value.
With these correlation values, we compare them with their
corresponding average correlation values during normal
frames to identify abnormality. For example, as shown in
Figure 1, the thread idling time takes up 70% of the time

plore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

spent in the critical call path, which is significantly larger
than the average value in normal frames (around 3%). Our
analysis pipeline would then highlight the issue as the most
probable root cause. If multiple issues are identified, they
are all reported to facilitate analysis. Also, we pay special
attention to the core scheduling of typical ARM CPUs with
the big.LITTLE architecture [23], which couples power-
efficient (LITTLE) cores with performant (big) cores to
strike a balance between power efficiency and performance.
If the app’s main or rendering thread is scheduled to
the LITTLE cores (the real-time scheduling information is
recorded by the kernel and captured in our data) and the
cores are fully utilized during rendering (i.e., 100% CPU
utilization), it is highly likely that its long rendering time
is caused by the worse performance of the LITTLE cores.
However, if the critical call path’s correlations with these
crucial system factors are trivial (i.e., less than the average
correlations during normal frames), it is more likely that the
root causes lie in the apps” own designs (e.g., complicate UI).
For them, we locate the corresponding UI components with
long rendering time to facilitate the root cause analysis.

Analysis Pipeline for ANR/SNR. For ANR/SNR, we
develope the pipeline based on the observation that AN-
R/SNR events with the same root cause tend to have similar
symptoms in terms of call stack patterns and lock contention
status. Recall that, for an ANR event, we collect call stacks
of the app process and system service processes, as well as
the blocked threads of the recorded processes. As shown
in Figure 2, we first decompose the call stacks of the app
process into several ones corresponding to each thread of
the process. Note that among the multiple threads of the
app process, there is only one blocked thread that is recorded
as Blocked by Android. Nevertheless, this blocked thread
(Tp) may not be the critical thread (1) that is expected to
be the most relevant to the root cause of the ANR event,
because the blocking of T}, might be in fact caused by other
threads of the process or even threads of system services
due to inter-process communication (IPC).

To identify T¢, we construct a wait-for graph [12] for the
app’s process, based on the wait, lock, and IPC informa-
tion we recognize in each thread’s call stack, as shown in
Figure 2. In the wait-for graph, a node stands for a thread
and an edge going from thread T; to T} indicates that 7T; is
currently blocked by 7). Thus, we can trace from T3 until
we find the last thread ! that has no successor, which is 7.

Having found the critical thread 7, we remove irrele-
vant information (e.g., line number, memory address, and
thread ID) from the call stacks using regular expressions 2.
The regular expressions are diverse in terms of their lengths
and complexities, e.g., some are as simple as numbers while
others involve more complex patterns. We also determine
the appropriate order of applying them to avoid false re-
movals. The remainder of the call stacks, which contains
considerable “feature” information, is then reorganized into
a feature vector. As depicted in Figure 2, a typical feature

1. In a very small portion (<1%) of cases, e.., when a cycle is detected
in the wait-for graph, we can find multiple critical threads for an ANR
event. Then, each critical thread will be processed separately and the
ANR event can simultaneously belong to multiple root-cause clusters.

2. The full list is at https:// Android-Poor-Respond.github.io

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

vector mainly consists of eight components that represent
CPU usage, memory usage, Java functions, native libraries,
kernel functions, process names, the number of locks, and
the length of the wait-for graph.

Based on the above processing, we can classify an ANR
event into the corresponding root-cause cluster using similar-
stack analysis [13]. If the feature vector (V;) of an ANR
event ¢ is similar to that (V;) of another ANR event j ,
i and j will be classified into the same root-cause cluster.
When measuring the similarity between V; and V}, instead
of directly applying off-the-shelf similarity metrics, we cus-
tomize the similarity metric by taking into account the high
heterogeneity across the features’ semantics, formats, and
generality. Specifically, we take the following “split-and-
merge” approach: we first separate all the features of each
vector V into two feature sets: F}, and F. given their hetero-
geneity; we then calculate the similarity values for F}, and
F, separately (denoted as S, (4, j) and S.(4, j) respectively
between V; and Vj); finally, we combine them to the overall
similarity denoted as S(i, 7).

In our design, F), contains CPU usage, memory con-
sumption, the instruction set, the app fatal signal, and the
app failure code, etc. These features tend to be “generic”
in that similar measures may also be observed during the
course of normal OS/app operations. To avoid over-fitting,
we compute S, (4, 7) using the Jaccard Index [24], a simple
metric that measures the set similarity:

_ |pri N prj‘
[Fpil + | Fpj| — | Fp,i N Fp,j

Sp(iaj) = J(Fp,ian,j) ’ (1)

where J(...) is the Jaccard Index function. In contrast, F.
contains Java functions, native libraries, kernel functions,
the number of locks, the length of the wait-for graph and
process names, efc. that are more specific to ANR/SNR
events compared to F),. We therefore calculate S, (4, j) using
the term vector space model [25] and cosine similarity [26],
which provide fine-grained, dimension-by-dimension com-
parison between two feature vectors:

F, c,i * F, c,j

(“7’ = Fci7Fc' = T =
Seli) = costFes Feis) = 1 Mg

@

The final similarity S(i,j) is derived as the weighted
average between S, (7, j) and S.(i, j) where the weights are
the respective cardinalities of the set F}, and F.. V; and V;
will be classified into the same root-cause cluster if S(i, j) is
above a threshold, which is empirically set to 0.95 based on
our inspection of representative ANR samples.

The similar-stack analysis can generate thousands of
root-cause clusters. However, we observe there are only
several dominant clusters that include the majority of ANR
events. We manually analyze the dominant clusters to vali-
date our analysis pipeline. Specifically, for each cluster, we
first manually analyze the traces of the K (empirically set
to 100) samples nearest to the cluster centroid to find out
their root cause(s). In practice, we notice that usually the
vast majority of the samples share exactly the same call stack
due to our high similarity threshold (0.95), whose root cause
is then most likely the cluster’s root cause. We thus first
analyze their root cause mainly by examining their critical
threads’ related system components, functionalities, and in-
situ system status based on our experiences and domain
knowledge. For example, when the samples’ call stacks indi-
cate that the critical thread experiences timeouts during Java

plore. Restrictions apply.

https://Android-Poor-Respond.github.io

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

o W_‘ 08

1% 0.6

Min = 16.7
Median = 13088.9
Mean = 35.5

Max = 24.3

CDF

0.1% 0.4

0.2

Percentage of Frames
.
n
ul

0
0 100 200 300 400 500 600 700 800

Phone Model Rendering Time (millisecond)

Figure 3: Occurrence rates of Figure 4: Frame rendering
SR/FF per phone model. time of SR and FF events.

VM'’s (related system component) garbage collection (func-
tionality) when the available memory is low (in-situ system
status), we attribute the root cause to insufficient memory.
The above root cause analysis results is also validated by
Xiaomi’s internal testing procedure, which involves the in-
dependent manual examination of the corresponding traces
by 3~5 system experts from the OS development team of
Xiaomi, so as to ensure that subsequent problem fixings
are not affected by false positives. Next, for the other event
samples with different yet similar call stacks in the same
cluster, we also analyze their root causes through the above
process and check whether they are consistent with the
extracted root cause; if not, we determine that the events
are falsely classified.

We then also apply the above analysis to the K samples
furthest from the centroid, comparing their root cause(s)
with those nearest to the centroid to check whether they
are still consistent. The examination result shows that all
the inspected cases are perfectly categorized with no false
positives. This is mainly because our high similarity thresh-
old (0.95) is not easily biased by high similarity in sub-
dimensions of the call stacks, e.g., high similarity in Java
functions yet low similarity in native libraries, which usu-
ally implies different event root causes in practice according
to our experiences.

For an SNR event, our collected log contains the call
stacks of multiple system service processes, where only one
is flagged by Android as the critical process that leads to SNR.
Then, we figure out the critical thread from this process
in a similar way as in the case of ANR; the subsequent
processing and classification are similar to those of ANR.

3 MEASUREMENT RESULTS

Based on our measurement and automatic analysis, we have
multifold findings on Android poor responsiveness in terms
of its prevalence and characteristics, as well as in-depth
understandings of their root causes.

Prevalence of Poor Responsiveness. Our measurement
reveals that all types of poor responsiveness occur preva-
lently on all the 15 studied phone models. As shown in
Figure 3, as many as 4.9%-18% of the rendered frames
during benchmark experiments are subject to SR and FE
Further, as depicted in Figure 4, among the captured SR and
FF events, we notice that >99% of the frames are SR events
with 70% of them having less than 32 ms frame rendering
time, which translates to >30 frames rendered per second
and thus are usually unnoticeable in practice. However, the
<1% FF events can take up to several seconds to render the
frames, which have severe impacts on user experiences.

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

1

0.2

g 10
o
0.8 T
Min =0 g
w %6 Median = 40.58 i)
8 Mean = 547.41 g
2
04 Max = 65274.43 m
k]
5]
o
£
=]
=z

0

0.001

o 05 1 15 2 25 3
Time Interval (second)

12345678 9101112131415
Phone Model

Figure 5: Time interval for
consecutive SR/FF—SR/FE

Figure 6: Avg. ANR/SNR
event number per model.

Similar skewed distributions can also be observed for
ANR/SNR. As shown in Figure 6, an average of 1.5 ANR
events and 0.04 SNR events occur on an Android phone
during the three-week measurement. However, for ANRs,
around a half (51%) of phones do not experience ANR,
while the maximum number of ANR events occurred on an
Android phone is 37. For SNRs, most (97%) phones do not
experience SNR, while the maximum number of SNR events
occurred on one phone is 18. On average, 29% devices
encountered at least an ANR or SNR event every ten days.

Correlations between Events. Although SR events are
significantly more frequent (over 1000x) than FF events, we
notice that their occurrences are in fact highly correlated as
shown in Figure 3 across different phone models. The sample
correlation coefficient [27] between their occurrence is as high
as 0.93. Similarly for ANR and SNR events, the sample
correlation coefficient between their occurrences can reach
0.73, which also suggests that they are highly relevant.

To understand the high correlations between events, we
examine the time interval between two neighboring SR/FF
events. As depicted in Figure 5, we discover that the median
time interval is 40.58 ms, indicating that the occurrences of
SR/FF events tend to be temporally localized. We further
analyze the time between an FF event and its most recently
preceding SR event (“FF—SR”), and find that the median
time interval is 653.98 ms, which suggests that when an FF
event occurs, it is highly likely that SR events will follow. In
contrast, an SR event is usually not followed by FF events.
Closer examination reveals that these patterns stem from
SR and FF events’ relations with system resource provi-
sioning. We find that when FF events occur, the resource
consumption of the system is extremely high (e.g., the CPU
utilization is around 100%), therefore can easily trigger SR
events as well. On the other hand, during SR events the CPU
utilization is ~60%, which is higher than the average level
but may not lead to FF events.

On the exact contrary, we find that the median time
interval between every SNR event and its most recently
preceding ANR event (“ANR—SNR”) is as long as 0.95 day
and the average is 2.19 days, as shown in Figure 7. There-
fore, an SNR event is usually not caused by an ANR event.
Additionally, we examine the time interval between every
ANR event and its preceding SNR event (“SNR—ANR”),
and find that ANR is not caused by SNR, either (Figure 7).
The high probability correlation and weak time correlation
suggest that ANR and SNR tend to be caused at the system
level. There is no causality between ANR and SNR events.

Hardware Configurations. As affected by vendors’ propa-
ganda of “better hardware helps improve software respon-

plore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

SRR g 104
—ANR-—- g B
08/ N e SNR—ANR z N Zipf fitting
@ >
0.6 z
L N
8 Min =0 Min =0 < ™
0.4 Median =0.95 | | Median =2.2 °
Mean = 2.19 Mean = 3.74 2
0.2 Max = 20.14 Max = 20.69 E log(y)=-axlog(x)+b
z
0 10°

0 4 8 12 16 20
Time Interval (day)

=
o

10
Ranking

Figure 7: Time interval
for consecutive ANR—SNR
and SNR—ANR.

Figure 8: Ranking of apps
by ANR event numbers.
Here a = 1.41 and b = 4.31.

siveness” [28]-[30], non-professional users might intuitively
believe that a phone with more advanced hardware experi-
ences fewer poor responsiveness events. Our measurement
finds that this may be true for SR and FF events. As shown
in Figure 3, with better hardware, a tested device is much
more likely to encounter fewer SR and FF events during the
measurement, which is due to their close relations with sys-
tem resource provisioning as discussed above. Surprisingly
perhaps, we can see from Figure 6 that this is not the case
for ANR and SNR—hardware configurations have no cor-
relations with the prevalence of ANR. Specifically, among
the 15 models of phones we study, the six oldest models
(Model 1-6, released between Dec. 2017 and Apr. 2018) and
the six latest models (Model 10-15, released between May.
2018 and Oct. 2018) experience almost the same number of
ANR events per phone (when the Android versions are the
same). Detailed hardware configurations of the 15 phone
models can be found in Table 1. Further, we notice that
better hardware even appears to aggravate SNR—the six
oldest models experience 50% fewer SNR events than the six
latest models per phone. The above results clearly illustrate
that ANR and SNR are not a hardware issue.

Android Versions. As Android evolves, considerable per-
formance optimizations have been added to the Android
framework and the OS kernel [31], [32]. In particular, we
are interested in the occurrences of ANR and SNR events
across different Android versions, which are less affected
by hardware configurations as compared to SR and FF.
Naturally, we expect ANRs and SNRs in recent Android
versions to be substantially reduced. Compared with An-
droid 7.0, there are 74% fewer ANR events but 33% more
SNR events happening on Android 9.0 (per phone). This
indicates that the performance optimizations have taken
effect in improving the responsiveness of apps.

However, we find that the system-level responsiveness
(i.e., the situation of SNR) gets worse, probably because
the more recent Android 9.0 (released in Sep. 2019) is not
as stable and robust, despite bearing higher performance.
In comparison, Android 8.0 (released in Aug. 2017) has
the best system-level responsiveness, probably owing to its
moderate performance and sound stability /robustness.

Mobile Apps. In our benchmark experiments, we run
10 apps on each tested device and examine the occurrence
rates of SR and FF of each app. As a result, we show that
Facebook (a social app), Gmail (an email app), and Subway
Surf (a 3D game) are the top-3 apps that experience the
highest SR/FF occurrence rates, which are 18.65%, 16.02%

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

25 &%
[ISequential Write a
[_JrRandom Write S

Ll

Real-time Lazy

n
o

= =
o o
Random Write Speed (|

o

Random Write Speed (MB/s)

Sequential Write Speed (MB/s)
Total Duration of Batched WAM (s)

8 10 12 14 16
Practical S, (GB)

o

Figure 9: Random and se-
quential write speeds of dif-
ferent WAM mechanisms.

Figure 10: Duration of
batched WAM and random
write speed for different Sy.

and 15.28%, respectively. For Facebook and Subway Surf,
we attribute this to their high workloads, including frequent
video streaming and 3D scene rendering.

For Gmail, the result may be somewhat surprising as
email apps are fairly simple in terms of their UI function-
alities. Further examination finds that this issue stems from
the severe redundant Ul rendering (RUIR) problem of Gmail’s
UI components. In Android, an app’s Ul components are
usually organized in a hierarchical fashion, where each Ul
component resides in a certain Ul layer. Using the painter’s
algorithm [11], Android draws an app’s UI layers in a
bottom-up manner. This algorithm can ensure that the over-
lapped UI components with different alpha (transparency)
settings are properly blended. However, if the upper layers’
alpha values are 1 (i.e., opaque), lower layers are drawn
but are in fact invisible, leading to unnecessary resource
consumption. Therefore, if an app’s Ul layout is improperly
designed, e.g., having too many redundant layers and alpha
settings, the RUIR problem could be rather severe. In fact,
we confirm that the UI layout of Gmail incurs heavy RUIR,
resulting in a large portion of the UI being redrawn for over
four times (less than one time is ideal) during rendering. In
Gmail, we find that every item in the email list is nested
with 3~4 Ul layers, leading to severe RUIR problem.

On the other hand, for ANR and SNR, our large-scale
measurement captures a total of 50,147 ANR events, involv-
ing a total of 1,446 Android apps. As depicted in Figure 8,
when ranking these apps by their corresponding number
of ANR events (in descending order), we observe a nearly-
Zipf [33] skewed distribution, where an app’s ranking (de-
noted as AN Rp) and its number of ANR events (denoted
as AN Ry) should fit the following distribution:

log(ANRN) = —alog(AN RR) + b. ©)]

To validate this, we fit the data by first taking the logarithm
of ANRr and AN Ry, and then using linear regression to
fit the negative linear relation shown in the above equation.
Our validation shows that when ¢ = 1.41 and b = 4.31,
the distribution would fit the data with a 0.92 coefficient
of determination [34] (R?, ranging from 0 to 1), which is
fairly close to 1 (the perfect fitting). Among the 50,147 ANR
events occurring to 1,446 apps, 30,489 (60%) are attributed
to only the top-10 (0.7%) apps, while the remaining (40%)
belong to the vast majority (99.3%) of apps in the “long
tail”. The reason is straightforward: the top-10 apps are
all extremely popular in users’ daily life, thus bearing the
highest probabilities of ANR.

Root Cause Analysis. To pinpoint the root causes of SR
and FF, we leverage buffer-aware hierarchical timing corre-

plore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

lation (cf. §2.3) to analyze the fine-grained kernel tracing
data collected in benchmark experiments on the studied
phone models. As a result, we uncover three major root
causes: 1) complex Ul components and high rendering
workloads of apps (61%), 2) slow I/O and Binder trans-
actions (28%), and 3) long CPU scheduling delay (11%).

In detail, for the first root cause, we find that the critical
function call paths in related events tend to be that of the
measuring and layout rendering stages, where CPUs need
to compute the size and position of each Ul component.
Particularly, we find that a considerable portion (73%) of
such events occur on apps with the RUIR problem. For
the latter two root causes, they suggest that the system is
most probably experiencing resource underprovisioning or
contention. More surprisingly, in 34% of the cases we notice
that the big cores remain idle when the LITTLE cores are
fully occupied, leading to SR/FF events. Delving deep we
uncover that this is because SurfaceFlinger, i.e., the sys-
tem service that composites the final frame, is always sched-
uled to the LITTLE cores (their cpuset configurations are
fixed to the LITTLE cores) to aggressively conserve battery
power in vanilla Android. This works well on devices with
more powerful CPUs, but tend to incur SR/FF on low-
end devices. In fact, Xiaomi have recently adjusted their
scheduling policy by allowing SurfaceFlinger to run
on big cores for low-end devices when LITTLE cores are
drained, which almost fully addresses the issue in practice.
We thus suggest that vendors should adapt their resource
scheduling policies to the specific hardware configurations.

For ANR and SNR, we leverage the automatic pipeline
(cf. §2.3), to acquire 1,814 root-cause clusters, among which
three dominant clusters include the majority (74%) of AN-
R/SNR logs. Then, we manually analyze the root causes
and discover them as 1) inefficient Write Amplification
Mitigation or WAM (35%), 2) lock contention among system
services (21%), and 3) insufficient memory (18%). Finally, we
merge all the other clusters into a single large cluster, whose
root cause is regarded as 4) app-specific defects (26%).

Among the aforementioned root causes of SR/FF and
ANR/SNR, the second (i.e., slow I/O and Binder transac-
tions for SR/FF and lock contention for ANR/SR) and the
third (i.e., long CPU scheduling delay for SR/FF and insuffi-
cient memory for ANR/SNR) can hardly be addressed since
resource contention and underprovisioning are classic OS
challenges; app-specific defects are even more challenging,
given that there is no silver bullet for bugs and defects in
software engineering. On the other hand, we find that the
the critical root causes for SR/FF (i.e., RUIR) and ANR/SNR
(i.e., WAM), can both be effectively addressed.

4 MITIGATION PRACTICES

In this section, we first present our practices of overcoming
RUIR of apps in §4.1. We next describe the internals of
the largest root cause (i.e., the WAM issue) of ANR/SNR
in §4.2, and then design a practical approach to effectively
eliminating the root cause with negligible overhead in §4.3.

4.1 Overcoming RUIR with Ul Layout Trimming

Recall that in Android, an app’s Ul components are orga-
nized in a hierarchical (layered) manner. Android renders

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

different Ul layers in a bottom-up fashion following the
painter’s algorithm, which, however, leads to the RUIR
problem if the app’s UI layout is not carefully designed,
e.g., the layout contains many unnecessary backgrounds
which will be covered by upper-layer components and thus
invisible to users, but are still rendered by the system. As
discussed in §3, as many as 43% of SR/FF events occur on
apps with the RUIR problem, indicating that it is a major
root cause of SR and FF events.

Fortunately, the RUIR problem can be effectively over-
come by optimizing a target app’s UI hierarchy. To this
end, we devise a dynamic layout trimming approach. In
detail, we first leverage our system tracing tool (cf. §2.1)
to capture fine-grained data at a target app’s runtime, and
then pick out Ul components with long rendering time,
which are most probably the components with the RUIR
problem. With this, we extract the inner Ul hierarchy of
the above UI components using Android’s dynamic layout
inspector tool [15], based on which we can quickly pinpoint
redundant UI components in the hierarchy. Meanwhile, we
pay special attention to transparent components which may
overlap with others but do not actually cover lower-layer
components due to its transparency. Having uncovered
the redundant UI components, we list their corresponding
(Java/Kotlin) Class names in order to enable developers’
quickly locating them at source code.

To evaluate the effectiveness of our proposed approach
of mitigating RUIR, we apply it to five popular open-source
Android apps: Wikipedia (a utility app), FairEmail (an email
app), K-9 Mail (an email app), Amaze (a file explorer app)
and Feeder (a news feed app). We first measure the apps’
SR/FF occurrence rates on the 15 studied phone models,
and then locate and remove redundant UI components
using our proposed dynamic layout trimming method. For
example, our dynamic layout trimming method uncovers
that K-9 Mail uses the <include> tag in its Ul layout
file, which directly nests another layout file and introduces
an unnecessary layer of hierarchy, leading to RUIR. To
resolve this, we directly merge the two layouts with the
<merge> tag to avoid redundant nesting, which preserves
the functionality of <include> while being able to remove
redundant hierarchy when including another layout file.
We further validate that the trimming does not violate
the original app functions by examining the Activities
related to the trimmed UI components. This is achieved
by applying our Ul automation method in §2.2 to interact
with all the interactable UI components in the Activities
and checking whether runtime exceptions are raised that
indicate function violation. We also extract and manually
examine the code related to the trimmed components to en-
sure that there is no side effect introduced by our trimming.

Finally, we measure the apps” SR/FF occurrence rates
on the 15 devices again to evaluate the effectiveness of our
method. As a result, we find that the SR/FF occurrence rates
are reduced by 11%~32%, averaging at 27% for the apps. In
particular, we observe that severe SR events with >400 ms
frame rendering time and FF events have been reduced by
46% and 53%, respectively, which can all noticeably impact
user experiences according to prior work [35]. Specifically,
since FairEmail’s RUIR problem is the least severe, its re-
sponsiveness improvement by our method is less significant

plore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

R —
app2 | | APP1

write delete

7 PN
Command L | I " I " I | I i |
write | fsync d| d|
Queve S Y I I I
blocked delayed r
Blocks E
Invalid Bk e i
Page "7 I =
[Pl L T }« =
torage
-
Lam

Figure 11: Android’s write amplification mitigation for flash
storage can lead to ANR or SNR events.

than that of others. On the other hand, Wikipedia, which is
subject to severe RUIR, benefits the most.

4.2 Understanding Android’s WAM

Android’s Implementation of WAM. As the storage
medium of almost all mobile phones, flash storage comes
with two unique characteristics. On one side, reading a
page (typically of 4 KB), which is the basic data access
unit in flash storage, is direct and fast compared to that in
traditional rotating-disk storage. On the other side, a block-
level erase operation is required before writing data into a
page, where a block consists of multiple (e.g., 128 or 256)
pages, resulting in an undesirable effect known as write
amplification [36] which can significantly degrade the data
write speed. Consequently, a write amplification mitigation
(WAM) mechanism [37] is introduced into Android: once a
page’s stored data has been logically deleted in the file sys-
tem, WAM marks it as invalid using the discard command.
Thus, before the next write, the flash storage can trim a block
containing invalid pages by moving valid pages in the block
to other blocks. In this way, the flash storage can later (e.g.,
when performing a write) directly erase the block with only
invalid pages, leading to improved write performance.

In Android, two types of WAM are provided. By default,
WAM is executed in a real-time manner. Many common op-
erations (e.g., screen unlock, app start, and app install /unin-
stall) in daily use could incur a number of file deletions.
Upon a file deletion, a sequence of discard commands are
sent to the storage controller, as demonstrated in Figure 11.
In addition, when the mobile phone is idle at 3 a.m. and
under charge, Android executes WAM in a batched manner
(we call lazy WAM), which marks all the invalid pages in
flash storage at a single run.

Benefits of WAMs. WAM (in particular real-time WAM)
is useful and effective. For data write speed, we conduct
benchmark experiments to measure the random write speed
and the sequential write speed of each experimental phone.
The former represents the worst-case data write speed while
the latter represents the best-case. The benchmark results
are listed in Figure 9, which shows that on our studied
phone models (cf. Table 1), real-time WAM can increase
the random (sequential) write speed by an average of 23%
(26.6%) compared to the lazy WAM.

The Inefficiency of Android’s WAM. Despite benefit-
ing the data write speed, real-time WAM comes with an
unexpected defect which can oftentimes lead to ANR or
SNR. Specifically, from our collected logs of WAM-incurred
ANR/SNR events, we observe a very common scenario as

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

shown in Figure 11. Suppose APP-1 is issuing a delete
command while APP-2 is issuing a write command. In
principle, the write command (of APP-2) should not be
affected by the discard commands (of APP-1), since the
former is synchronous while the latter are asynchronous
(so the former should be executed with a high priority). In
practice, however, a special synchronous command, £sync,
is often issued before write or read [38] to ensure the data
consistency between memory and storage. The specialty of
fsync lies in that its execution requires the completion of
all the preceding discards. Hence, due to fsync, discard
has in fact become a quasi-asynchronous [39] command that
could block its succeeding write command, thus leading
to the ANR of APP-2 or SNR of Android.

To mitigate the defect of real-time WAM, an intuitive
approach is to adopt “lazy” WAM instead of real-time
WAM. Nevertheless, we find this lazy WAM mechanism can
hardly meet our goal for three reasons. First, it is performed
in a too “lazy” manner (at most once per day) and thus
cannot mitigate write amplification in time. Second, once
started, it cannot be interrupted; during the entire process
(which is computation-intensive and time-consuming), if
the screen is unlocked the user may well experience poor
responsiveness. Third, if it is terminated (e.g., the user kills
the process) during the run, it will always make a “fresh”
restart from the head when executed again.

4.3 Practical WAM

To mitigate write amplification in Android without bringing
ANR or SNR, we design a practical WAM mechanism by
making batched WAM fine-grained and non-intrusive.

Data-driven WAM. We take a data-driven approach to
determine when to trigger the execution of batched WAM
on demand. We use the analysis in benchmark experiments
described in §4.2 which contain two-fold information: a)
random write speed and b) total duration of batched WAM
(how long it takes to fulfill all rounds of batched WAM
in a whole day). As shown in Figure 10, when a smaller
threshold is used for S, write amplification can be better
addressed and the random write speed is expected to in-
crease, but the total duration of batched WAM will increase
since more rounds of batched WAM need to be executed
for the same total amount of deleted data (given that each
round of batched WAM involves non-trivial startup time
and system overhead). We notice that S;=6 GB tends to
balance the above tradeoff. We also find that the 6 GB
threshold works well under real workload based on our
small-scale test deployment.

Support for Pausing and Resuming. A shortcoming of
Android’s batched WAM mechanism is that it cannot be
interrupted once started. We thus adjust the execution logic
of Android’s batched WAM so that it can be paused and
resumed to provide a better user experience. Specifically,
we make two improvements. First, we register a broadcast
receiver for the system’s screen lock/unlock event, so that
once the screen is unlocked, the receiver will get notified
and then send a signal to pause the execution of the batched
WAM. Second, we modify the batched WAM thread, which
comprises a loop of trimming page groups (a page group

plore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

typically consists of 32K pages) to mitigate write amplifica-
tion. In our modification, the batched WAM thread responds
to the pause signal by recording the number of page groups
that have already been trimmed and other necessary states
before interrupting the execution. This allows the job to be
resumed later when the screen is locked. In this way, the
phone’s perceived responsiveness in the presence of batched
WAM is significantly improved.

Large-Scale Evaluation and Deployment. In order to
understand the real-world impact of our design, we patched
our proposed WAM mechanism to Android-MOD and sent
invitations to the original 30,000 opt-in users to participate
in our performance evaluation. This time, nearly 14,000
users opted in by installing the patched Android-MOD. The
performance evaluation also lasted for three weeks (March
1st-21st, 2019). We observe that our design reduces 32% of
the ANR events and 47% of the SNR events per phone.
Furthermore, we use the automated analysis procedure
described in §2.3 to analyze the collected logs of the ANR
and SNR events after our patch is deployed. We find that
almost all (>99%) of the ANR and SNR events caused by
WAM have been avoided.

We also evaluate the effect on data write speed through
benchmarks (as described in §4.2). As shown in Figure 9,
with practical WAM, the random (sequential) write speed
decreases by an average of merely 2% (3%). Given its
effectiveness, our design has been incorporated into five
stock Android builds by Xiaomi since May 2019. It is now
benefiting ~20M Android users every day. Other vendors
(e.g., Huawei and Honor) have also adopted the approach to
benefit their users since the release of the patched Android-
MOD. We are also working with Google to integrate the
design into vanilla Android.

5 RELATED WORK

Diagnosing Poor Responsiveness of Mobile Apps. Prior
work has proposed approaches to detect and mitigate per-
formance issues of mobile apps. First, some work utilizes
dynamic approaches such as test amplification [40] and
resource amplification [41] to study the runtime behavior
of mobile apps. Second, researchers have employed static
code analysis to pinpoint buggy code patterns such as a
lack of timeout handling [42] and blocking operations in
UI threads [43]. Compared to the above work, our study
conducts controlled benchmarking and large-scale measure-
ment of Android poor responsiveness. We reveal that, for
example, the top reason of SNR/ANR is the inefficient
WAM design in Android.

I/O Optimization for Mobile Storage. A number of I/O
optimizations have been proposed for mobile storage [44]-
[46]. For example, Jeong et al. [46] propose a number of I/O
stack optimizations specialized for smartphone storage. Our
work, instead, strives to address the shortcoming of An-
droid’s WAM implementation in a compatible and practical
manner. Therefore, we choose to improve Android’s existing
batched WAM instead of completely replacing file system
components. Our solution only requires small changes to the
current Android OS, and has been well adopted by multiple
stock Android systems.

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;qu ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

6 CONCLUSION

This paper presents our experiences in understanding and
combating poor responsiveness events including SR/FF and
ANR/SNR in Android-based smartphone systems. Despite
their disruptions to mobile user experiences, these events
are not well measured and analyzed. Our study fills the
above critical gap by complementarily combining controlled
benchmarking on diverse devices and large-scale crowd-
sourced measurement with around 30,000 opt-in users. We
utilize lightweight kernel tracing and continuous monitor-
ing infrastructure to collect fine-grained system-level data
that capture every poor responsiveness event on studied
devices. We then build automatic analysis schemes to infer
the root causes of the observed events. The measurement
and analysis help us understand poor responsiveness “in
the wild”. Most importantly, we develop practical solutions
to mitigate the critical root causes of both SR/FF and AN-
R/SNR, which have yielded real-world impacts.

REFERENCES

[1] Android.org, “The Slow Rendering of Android,” Nov. 2019, https:
/ / developer.android.com/topic/performance/vitals /render.

[2] ——, “Keeping Your Android App Responsive,” Nov. 2019, https:
/ / developer.android.com/training /articles /perf-anr.
[3] ——, “The Source Code of Android Watchdog,” Nov. 2019,

https:/ /android.googlesource.com/platform/frameworks/base.
git/+/android-4.3_r2.1/services/java/com/android/server/
Watchdog java.

[4] ——, “Dedicated RenderThread for UI Rendering Tasks,” Nov.
2022, https://developer.android.com/about/versions/lollipop.
html#Material.

[5] ——, “V-Sync Timing for Synchronizing CPU and GPU Tasks,”

Nov. 2019, https:/ /developer.android.com/about/versions/jelly-
bean#android-4.1.

[6] ——, “Executing Ul Changes on Main Thread,” Nov. 2022,
https://developer.android.com/reference/android /app/
Activity#runOnUiThread(java.lang.Runnable).

[7] Q. Yang, Z. Li, Y. Liu, H. B. Long, Y. A. Huang, J. He, T. Xu,
and E. Zhai, “Mobile Gaming on Personal Computers with Direct
Android Emulation,” in Proceedings of ACM MobiCom, 2019, pp.
1-15.

[8] S.Yang, D.Yan, and A. Rountev, “Testing for Poor Responsiveness
in Android Applications,” in Proceedings of IEEE MOBS, 2013, pp.
1-6.

[9] Android.org, “Android ftrace/atrace,” Nov. 2019, https:/ /source.
android.com/devices/tech/debug/ftrace.

, “Reduce Overdraw,” Nov. 2019, https://developer.android.
com/topic/performance/rendering/overdraw.

[11] J. D. Foley, E. D. Van, A. Van Dam, S. K. Feiner, J. E Hughes,
E. Angel, and J. Hughes, Computer Graphics: Principles and Practice.
Addison-Wesley Professional, 1996, vol. 12110.

[12] E.G. Coffman, M. Elphick, and A. Shoshani, “System Deadlocks,”
ACM Computing Surveys, vol. 3, no. 2, pp. 67-78, 1971.

[13] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and
Z. Su, “Large-scale Analysis of Framework-specific Exceptions in
Android Apps,” in Proceedings of ACM/IEEE ICSE, 2018, pp. 408—
419.

[14] Y. Lu, J. Shu, and W. Zheng, “Extending the Lifetime of Flash-
based Storage through Reducing Write Amplification from File
Systems,” in Proceedings of USENIX FAST, 2013, pp. 257-270.

[15] Android.org, “Android Layout Inspector,” Nov. 2019, https://
developer.android.com/studio/debug/layout-inspector.

[16] Xiaomi.com, “Xiaomi MIUL"” Nov. 2019, https:/ /en.miui.com/.

[17] Samsung.com, “Samsung One UI 2.0,” Nov. 2019, https://www.
samsung.com/global/galaxy/apps/one-ui/.

[18] Oneplus.com, “Oneplus OxygenOS,” Nov. 2019, https://www.
oneplus.com/oxygenos.

[19] Motorola.com, “Motorola Android System,” Nov. 2019, https://
www.motorola.com/us/software-and-apps/android.

[20] Android.org, “Android Compatibility Test Suite,” Nov. 2019,
https:/ /source.android.com/docs/compatibility / cts.

[10]

plore. Restrictions apply.

https://developer.android.com/topic/performance/vitals/render
https://developer.android.com/topic/performance/vitals/render
https://developer.android.com/training/articles/perf-anr
https://developer.android.com/training/articles/perf-anr
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
https://developer.android.com/about/versions/lollipop.html#Material
https://developer.android.com/about/versions/lollipop.html#Material
https://developer.android.com/about/versions/jelly-bean#android-4.1
https://developer.android.com/about/versions/jelly-bean#android-4.1
https://developer.android.com/reference/android/app/Activity#runOnUiThread(java.lang.Runnable)
https://developer.android.com/reference/android/app/Activity#runOnUiThread(java.lang.Runnable)
https://source.android.com/devices/tech/debug/ftrace
https://source.android.com/devices/tech/debug/ftrace
https://developer.android.com/topic/performance/rendering/overdraw
https://developer.android.com/topic/performance/rendering/overdraw
https://developer.android.com/studio/debug/layout-inspector
https://developer.android.com/studio/debug/layout-inspector
https://en.miui.com/
https://www.samsung.com/global/galaxy/apps/one-ui/
https://www.samsung.com/global/galaxy/apps/one-ui/
https://www.oneplus.com/oxygenos
https://www.oneplus.com/oxygenos
https://www.motorola.com/us/software-and-apps/android
https://www.motorola.com/us/software-and-apps/android
https://source.android.com/docs/compatibility/cts

[21]
[22]
[23]
[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3237716

——, “UI Automator,” Nov. 2019, https://developer.android.
com/training/testing /ui-automator.

Alexa.com, “Alexa Traffic Ranking for Websites,” 2019, https://
www.alexa.com/.

P. Greenhalgh, “big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7,” ARM White Paper, vol. 17, 2011.

P. Jaccard, “The Distribution of the Flora in the Alpine Zone,” New
phytologist, vol. 11, no. 2, pp. 37-50, 1912.

G. Salton, A. Wong, and C.-S. Yang, “A Vector Space Model for
Automatic Indexing,” ACM Communications, vol. 18, no. 11, pp.
613-620, 1975.

A. Singhal et al., “Modern Information Retrieval: A Brief
Overview,” IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35-43, 2001.

J. Lee Rodgers and W. A. Nicewander, “Thirteen Ways to Look at
The Correlation Coefficient,” ASA The American Statistician, vol. 42,
pp- 59-66, 1988.

Samsung.com, “Performance of Samsung Galaxy S10,” Now.
2019, https:/ /www.samsung.com/us/mobile/galaxy-s10/
performance/.

Oneplus.com, “Overview of OnePlus 6T,” Nov. 2019, https://
www.oneplus.com/6t?from=head.

Oppo.com, “Overview of OPPO Reno Z,” Nov. 2019, https://
www.oppo.com/ae/smartphone-reno-z/.

Android.org, “Help Optimize Both Memory Use and
Power Consumption by Background Optimizations,” Nov.
2019, https:/ /developer.android.com/topic/performance/
background-optimization.

——, “Improving App Performance with ART Optimizing
Profiles in The Cloud,” Nov. 2019, https://android-developers.
googleblog.com/2019/04/improving-app-performance-with-art.
html.

D. M. Powers, “Applications and Explanations of Zipf’s Law,” in
Proceedings of ACL NeMLaP3/CoNLL, 1998, pp. 151-160.

S. Wright, “Correlation And Causation,” 1921.

Y. Luo, K. Rodrigues, C. Li, F. Zhang, L. Jiang, B. Xia, D. Lion, and
D. Yuan, “Hubble: Performance Debugging with In-Production,
Just-In-Time Method Tracing on Android,” in USENIX OSDI, 2022,
pp- 787-803.

X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
Amplification Analysis in Flash-based Solid State Drives,” in
Proceedings of ACM SYSTOR, 2009, p. 10.

Redhat.org, “Write Amplification Mitigation,” Nov. 2019, https://
access.redhat.com/documentation/en-US/Red_Hat_Enterprise_
Linux/7/html/Storage_Administration_Guide /ch02s04.html.

K. Lee and Y. Won, “Smart Layers and Dumb Result: IO Character-
ization of An Android-based Smartphone,” in Proceedings of ACM
EMSOFT, 2012, pp. 23-32.

D. Jeong, Y. Lee, and].-S. Kim, “Boosting Quasi-asynchronous I/O
for Better Responsiveness in Mobile Devices,” in Proceedings of
USENIX FAST, 2015, pp. 191-202.

P. Zhang and S. Elbaum, “Amplifying Tests to Validate Exception
Handling Code,” in Proceedings of IEEE ICSE, 2012, pp. 595-605.
Y. Wang and A. Rountev, “Profiling The Responsiveness of An-
droid Applications via Automated Resource Amplification,” in
Proceedings of IEEE/ACM MOBILESoft, 2016, pp. 48-58.

X. Jin, P. Huang, T. Xu, and Y. Zhou, “NChecker: Saving Mobile
App Developers from Network Disruptions,” in Proceedings of
ACM EuroSys, 2016, p. 22.

T. Ongkosit and S. Takada, “Responsiveness Analysis Tool for
Android Application,” in Proceedings of ACM DeMobile, 2014, pp.
1-4.

S. Park and K. Shen, “FIOS: A Fair, Efficient Flash I/O Scheduler.”
in Proceedings of USENIX FAST, 2012, pp. 13-13.

D. T. Nguyen, “Improving Smartphone Responsiveness Through
I/0O Optimizations,” in Proceedings of ACM UbiComp, 2014, pp.
337-342.

S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O Stack Optimiza-
tion for Smartphones,” in Proceedings of USENIX ATC, 2013, pp.
309-320.

i © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o;é;/ ublications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 25,2023 at 07:47:06 UTC from IEE

Hao Lin (Student Member, IEEE/ACM) received
the BS degree from the School of Software, Ts-
inghua University in 2020. He is working towards
the PhD degree also at the School of Software,
Tsinghua University, Beijing, China. His research
areas mainly include operating systems and mo-
bile networks.

Cai Liu received the BS degree from the School
of Computer and Information, Hohai University
in 2005. He is a Senior System Optimization
Engineer in Xiaomi Technology Co. LTD. Prior to
joining Xiaomi, he worked at Motorola, ZTE, and
Samsung. He is expert at operating system.

Zhenhua Li (Senior Member, IEEE/ACM) re-
ceived the BSc and MSc degrees from Nanjing
University, in 2005 and 2008 respectively, and
the PhD degree from Peking University, in 2013,
all in computer science and technology. He is an
Associate Professor with the School of Software,
Tsinghua University. His research areas cover
network measurement, mobile networking/emu-
lation, and cloud computing/storage.

Feng Qian (Member, IEEE/ACM) received the
BS degree from Shanghai Jiao Tong University,
and the Ph.D. degree from the University of
Michigan. He is currently an Associate Profes-
sor in the Computer Science and Engineering
Department at University of Minnesota - Twin
Cities. Prior to joining UMN, he worked at AT&T
Labs and Indiana University. His research inter-
ests cover mobile systems, AR/VR, mobile net-
working, wearable computing, real-world system
measurements, and system security.

Mingliang Li received the BS degree in com-
puter science from Nanjing University. He is
working towards the MEng degree at the School
of Software, Tsinghua University, Beijing, China.
Prior to joining THU in 2019, he worked at Xi-
aomi Technology Co. LTD. for system optimiza-
tion, which is also his current research interest.

Ping Xiong received the BS and MS degrees
from Wuhan University. He is now a Senior Soft-
ware Engineer at Xiaomi Technology Co. LTD.
He works in mobile software development and
storage system optimization.

Yunhao Liu (Fellow, IEEE/ACM) received the
BS degree in Automation Department from Ts-
inghua University, an MS and a Ph.D. degree in
Computer Science and Engineering from Michi-
gan State University. He is now a Full Professor
at and the Dean of Global Innovation Exchange
(GIX), Tsinghua University. His research inter-
ests include sensor network and loT, localiza-
tion, RFID, distributed systems, and cloud com-

puting.

plore. Restrictions apply.

https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://www.alexa.com/
https://www.alexa.com/
https://www.samsung.com/us/mobile/galaxy-s10/performance/
https://www.samsung.com/us/mobile/galaxy-s10/performance/
https://www.oneplus.com/6t?from=head
https://www.oneplus.com/6t?from=head
https://www.oppo.com/ae/smartphone-reno-z/
https://www.oppo.com/ae/smartphone-reno-z/
https://developer.android.com/topic/performance/background-optimization
https://developer.android.com/topic/performance/background-optimization
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html

	1 Introduction
	2 Methodology
	2.1 Continuous System Tracing Framework
	2.2 Complementary Measurements
	2.3 Root Cause Analysis Pipelines

	3 Measurement Results
	4 Mitigation Practices
	4.1 Overcoming RUIR with UI Layout Trimming
	4.2 Understanding Android's WAM
	4.3 Practical WAM

	5 Related Work
	6 Conclusion
	References
	Biographies
	Hao Lin
	Cai Liu
	Zhenhua Li
	Feng Qian
	Mingliang Li
	Ping Xiong
	Yunhao Liu

