
Experience: Aging or Glitching? 
Why Does Android Stop Responding and 

What Can We Do About It?

Mingliang Li, Hao Lin, Cai Liu, Zhenhua Li

Feng Qian, Yunhao Liu, Nian Sun, Tianyin Xu



1. Background

2. Measurement Design

3. Key Findings

5. Summary

2

Outline

4. Addressing the Problem



 Responsiveness: a key metric for user experience

1. Responsiveness of Android

3

Many Android users may have experienced unresponsiveness

 Till now poor responsiveness on Android is still prevalent

Typical unresponsiveness



 In particular, ANR and SNR directly disrupt user experience

 Still unknown: their prevalence, characteristics, and root causes

1. ANR and SNR

4

Application Not Responding (ANR)
Either kill the app or wait

System Not Responding (SNR)
A system restart will be forced

Reboot



2. Continuous Monitoring Infrastructure

5

 Android’s original diagnostic mechanism is not enough!
 Original: CPU, memory, call stacks of relevant processes
 Lacking: visibility into critical system services

 Our continuous monitoring infrastructure
 Android-MOD: a customized Android system
 Modifying vanilla Android versions 7.0, 8.0, and 9.0
 Lightweight: negligible runtime overhead

Android-
MOD

Collecting info of 
system services

Diagnosis 
with 

Android

Lacking insights into 
important system services

Need to modify the 
Android framework



2. Crowdsourcing Measurement

We collaborate with Xiaomi, a major phone vendor 

We invite all its users (∼250M) to participate, ≥30,000 opt in

 They upgrade to Android-MOD to record ANR/SNR data

6

 The measurement lasted for three 

weeks, involving a wide range of 

phones across 15 different models

Hardware and OS configurations of our 
measured phone models



2. Root Cause Analysis Pipeline

 System developers usually analyze ANR/SNR logs by hand

 To scale, we develop an automated analysis pipeline

 It classifies ANR/SNR events with the same root cause to a cluster

 Validation: no false positives

7

Work flow of our developed automated root cause analysis pipeline



2. Root Cause Analysis Pipeline

8

 Constructing Wait-for Graph
 Target: find the critical thread most related to the event

 Decompose the process-level call stacks into thread-level call stacks

 Only one thread is marked as Blocked, but is not the critical thread

 Wait-for graph based on the wait, lock, and IPC information in the call stack

 The end node in the graph is deemed as the critical thread

 Similar-stack Analysis
 Remove irrelevant information such as memory address

 Reconstruct the call stack into a feature vector

 Calculate similarity in a “split-and-merge” manner

 Classify events into a root-cause cluster based on similarity

Feature Vector



3. Key Findings: Prevalence & Mobile Apps

 Both ANR and SNR occur prevalently on all the 15 models

 ANR occurrences on apps are skewed

 60% ANR events are attributed to only the top-10 (0.7%) apps

9

Top-10 apps ordered by number of ANR events.



3. Key Findings: Correlations

 ANR and SNR events are highly correlated in terms of occurrences

 But there is no causality between ANR and SNR events

 It suggests that ANR/SNR tend to be caused at the system level

10



3. Key Findings: Hardware/OS

 No correlations between hardware and the prevalence of ANR/SNR

 Better hardware even appears to aggravate SNR

 Newest OS: less ANR, more SNR

11



3. Key Findings: Root Causes

 Four major root causes of ANR/SNR
 Pathological Write Amplification Mitigation (WAM, 35%)

 Lock contention among system services (21%)

 Insufficient memory (18%)

 App-specific defects (26%)

12

Pathological WAM can be 
fundamentally eliminated!



3. Measurement Findings: Root Causes

 The issue with Android’s implementation of WAM (real-time)

13



4. Eliminating the Largest Root Cause

 Batched WAM: once a day, trim the entire storage

 Performing practical on-demand WAM

 Support for pausing and resuming

14

Pause and 
Resume

Batched WAM
Monitor file 

deletions

When the amount reaches a 
data-driven threshold

Screen lock/unlock



4. Commercial Deployment & Evaluation

 Patched our proposed WAM mechanism to Android-MOD

 Invited the original 30,000 users to upgrade (14,000 opted in)

 Reduce 32% of ANR 47% of SNR per phone

 Almost all of the WAM-induced ANR/SNR have been avoided

 The random (sequential) write speed decreases by an average of 

merely 2% (3%), compared to real-time WAM

15



4. Commercial Deployment & Evaluation

 Adopted by 5 stock Android systems whose corresponding hardware 

models are as listed below, benefiting ∼20M Android users

⚫ Sagit

⚫ Cepheus

⚫ Lavender 

⚫ Rosy

⚫ Jasmine

 Besides Xiaomi’s MIUI OS, Huawei EMUI OS has also optimized the 

native WAM mechanism in a similar way

16



5. Summary of Contributions

17

◼We conduct the first large-scale measurement of ANR and 
SNR of Android in the wild. We discover that ANR and SNR 
are more of a software issue than a hardware issue

◼We present our end-to-end data collection and analysis 
pipeline for deeply understanding ANR and SNR. 

◼We diagnose and address the largest root cause of ANR and 
SNR. After real-world deployment, our solution reduces 32% 
ANR and 47% SNR events while only decreasing 3% of the 
data write speed

◼ Code and data at https://Android-Not-Respond.github.io

https://android-not-respond.github.io/

