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4. Addressing the Problem



 Responsiveness: a key metric for user experience

1. Responsiveness of Android

3

Many Android users may have experienced unresponsiveness

 Till now poor responsiveness on Android is still prevalent

Typical unresponsiveness



 In particular, ANR and SNR directly disrupt user experience

 Still unknown: their prevalence, characteristics, and root causes

1. ANR and SNR
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Application Not Responding (ANR)
Either kill the app or wait

System Not Responding (SNR)
A system restart will be forced

Reboot



2. Continuous Monitoring Infrastructure
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 Android’s original diagnostic mechanism is not enough!
 Original: CPU, memory, call stacks of relevant processes
 Lacking: visibility into critical system services

 Our continuous monitoring infrastructure
 Android-MOD: a customized Android system
 Modifying vanilla Android versions 7.0, 8.0, and 9.0
 Lightweight: negligible runtime overhead

Android-
MOD

Collecting info of 
system services

Diagnosis 
with 

Android

Lacking insights into 
important system services

Need to modify the 
Android framework



2. Crowdsourcing Measurement

We collaborate with Xiaomi, a major phone vendor 

We invite all its users (∼250M) to participate, ≥30,000 opt in

 They upgrade to Android-MOD to record ANR/SNR data
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 The measurement lasted for three 

weeks, involving a wide range of 

phones across 15 different models

Hardware and OS configurations of our 
measured phone models



2. Root Cause Analysis Pipeline

 System developers usually analyze ANR/SNR logs by hand

 To scale, we develop an automated analysis pipeline

 It classifies ANR/SNR events with the same root cause to a cluster

 Validation: no false positives
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Work flow of our developed automated root cause analysis pipeline



2. Root Cause Analysis Pipeline
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 Constructing Wait-for Graph
 Target: find the critical thread most related to the event

 Decompose the process-level call stacks into thread-level call stacks

 Only one thread is marked as Blocked, but is not the critical thread

 Wait-for graph based on the wait, lock, and IPC information in the call stack

 The end node in the graph is deemed as the critical thread

 Similar-stack Analysis
 Remove irrelevant information such as memory address

 Reconstruct the call stack into a feature vector

 Calculate similarity in a “split-and-merge” manner

 Classify events into a root-cause cluster based on similarity

Feature Vector



3. Key Findings: Prevalence & Mobile Apps

 Both ANR and SNR occur prevalently on all the 15 models

 ANR occurrences on apps are skewed

 60% ANR events are attributed to only the top-10 (0.7%) apps
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Top-10 apps ordered by number of ANR events.



3. Key Findings: Correlations

 ANR and SNR events are highly correlated in terms of occurrences

 But there is no causality between ANR and SNR events

 It suggests that ANR/SNR tend to be caused at the system level
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3. Key Findings: Hardware/OS

 No correlations between hardware and the prevalence of ANR/SNR

 Better hardware even appears to aggravate SNR

 Newest OS: less ANR, more SNR
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3. Key Findings: Root Causes

 Four major root causes of ANR/SNR
 Pathological Write Amplification Mitigation (WAM, 35%)

 Lock contention among system services (21%)

 Insufficient memory (18%)

 App-specific defects (26%)
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Pathological WAM can be 
fundamentally eliminated!



3. Measurement Findings: Root Causes

 The issue with Android’s implementation of WAM (real-time)
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4. Eliminating the Largest Root Cause

 Batched WAM: once a day, trim the entire storage

 Performing practical on-demand WAM

 Support for pausing and resuming
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Pause and 
Resume

Batched WAM
Monitor file 

deletions

When the amount reaches a 
data-driven threshold

Screen lock/unlock



4. Commercial Deployment & Evaluation

 Patched our proposed WAM mechanism to Android-MOD

 Invited the original 30,000 users to upgrade (14,000 opted in)

 Reduce 32% of ANR 47% of SNR per phone

 Almost all of the WAM-induced ANR/SNR have been avoided

 The random (sequential) write speed decreases by an average of 

merely 2% (3%), compared to real-time WAM
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4. Commercial Deployment & Evaluation

 Adopted by 5 stock Android systems whose corresponding hardware 

models are as listed below, benefiting ∼20M Android users

⚫ Sagit

⚫ Cepheus

⚫ Lavender 

⚫ Rosy

⚫ Jasmine

 Besides Xiaomi’s MIUI OS, Huawei EMUI OS has also optimized the 

native WAM mechanism in a similar way
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5. Summary of Contributions
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◼We conduct the first large-scale measurement of ANR and 
SNR of Android in the wild. We discover that ANR and SNR 
are more of a software issue than a hardware issue

◼We present our end-to-end data collection and analysis 
pipeline for deeply understanding ANR and SNR. 

◼We diagnose and address the largest root cause of ANR and 
SNR. After real-world deployment, our solution reduces 32% 
ANR and 47% SNR events while only decreasing 3% of the 
data write speed

◼ Code and data at https://Android-Not-Respond.github.io

https://android-not-respond.github.io/

